
www.manaraa.com

JUHANA HARMANEN
POLYGLOT PROGRAMMING IN WEB DEVELOPMENT
Master’s thesis

Examiner: Professor Tommi Mikkonen
Examiner and topic approved by the
Faculty meeting of the Faculty of
Computing and Electrical Engineering
on 8 May 2013.



www.manaraa.com

I

ABSTRACT

TAMPERE UNIVERSITY OF TECHNOLOGY
Master’s Degree Programme in Information Technology
HARMANEN, JUHANA: Polyglot Programming in Web Development
Master of Science Thesis, 90 pages
September 2013
Major: Software engineering
Examiner: Professor Tommi Mikkonen
Keywords: Polyglot programming, web development, polyglot programming on the JVM,
poly-paradigm programming, Java, Groovy, Spring Framework, Grails, Vert.x, AngularJS

Different programming languages are used to solve different problem domains. Front-end
code standards and best practices are used to separate presentation, content and behavior.
Architectural approaches like three-tier client-server architecture present user interface,
business logic and data access as independent modules to develop and maintain.

The idea of polyglot programming is to combine and utilize the best solutions from
different programming languages and paradigms. Therefore, polyglot programming has
the potential to improve web development in various areas. Web development has always
been polyglot.

Polyglot system has two essential aspects, the platform used for the integration and the
programming languages supported. The recent rise of non-Java programming languages
running on the Java Virtual Machine has created a favorable environment for polyglot pro-
gramming. The possibility to use more expressive and succinct programming languages
with existing solutions has proven to be essential in web development.

An example web project was implemented to study the observations in practice. The
project was implemented in both Java and Groovy as a server-side web application and
also with Vert.x and AngularJS as a client-side single-page application. Also an additional
Groovy implementation with Java legacy domain model was implemented to study pro-
gramming language interoperability on the Java Virtual Machine. The results were eval-
uated against related work consisting two project implementations and three case study
projects presented also in the context of polyglot programming in web development.

Polyglot programming can enhance web development, because different programming
languages and frameworks promise an increase in productivity, reduced amount of code
and improved code quality that together promote better maintainability. Although poly-
glot programming has a steep learning curve that affects on required knowledge, main-
tainability, and tool support.



www.manaraa.com

II

TIIVISTELMÄ

TAMPEREEN TEKNILLINEN YLIOPISTO
Tietotekniikan koulutusohjelma
JUHANA HARMANEN: Monikieliohjelmointi Web-sovelluskehityksessä
Diplomityö, 90 sivua
Syyskuu 2013
Pääaine: Ohjelmistotuotanto
Tarkastajat: professori Tommi Mikkonen
Avainsanat: monikieliohjelmointi, Web-sovelluskehitys, monikieliohjelmointi Java virtuaa-
likoneessa, moniparadigmaohjelmointi, Java, Groovy, Spring Framework, Grails, Vert.x,
AngularJS

Erilaisia ongelma-alueita pyritään ratkaisemaan käyttäen eri ohjelmointikieliä. Esimer-
kiksi Frontend-ohjelmointikäytäntöjä noudattamalla voidaan erottaa esitys-, sisältö ja toi-
mintalogiikka toisistaan. Lisäksi arkkitehtuuriratkaisut, kuten kolmikerrosarkkitehtuuri,
jakavat käyttöliittymän, toimintalogiikan ja tietovarastojen käytön itsenäisiksi, mahdolli-
sesti toisistaan erillään kehitettäviksi ja ylläpidettäviksi moduuleiksi.

Monikieliohjelmoinnin ideana on yhdistää ja hyödyntää ohjelmointikielten ja ohjel-
mointiparadigmojen parhaat ratkaisut. Tästä syystä monikieliohjelmointi voi mahdolli-
sesti parantaa Web-sovelluskehitystä useilla eri osa-alueilla. Monikielisyys on aina ollut
osa Web-sovelluskehitystä.

Monikielisessä järjestelmässä on kaksi olennaista ominaisuutta, käytettävissä oleva so-
velluskehitysalusta sekä käytettävissä olevat ohjelmointikielet. Viimeaikainen kehitys oh-
jelmointikielissä Java-virtuaalikoneella on luonut suotuisan ympäristön monikieliohjel-
moinnille. Mahdollisuus käyttää kuvaavampia ja ytimekkäämpiä ohjelmointikieliä ole-
massa olevien ratkaisujen tukena on osoittautunut tärkeäksi.

Työn yhteydessä toteutettua esimerkkiprojektia käytettiin tarkastelemaan tehtyjä ha-
vaintoja käytännössä. Projekti toteutettiin sekä Java- että Groovy-ohjelmointikielellä pal-
velinpuolen Web-sovelluksena sekä Vert.x ja AngularJS Web-sovelluskehyksiä hyödyn-
täen asiakaspuolen yhden sivun Web-sovelluksena. Lisäksi ohjelmointikielten yhteentoi-
mivuutta tutkittiin tekemällä Groovy-ohjelmointikielellä toteutus, joka hyödynsi valmista
Java-toteutuksen toimialueen mallinnusta.

Monikieliohjelmointi voi tehdä Web-sovelluskehityksestä kannattavampaa. Eri ohjel-
mointikielet ja ohjelmistokehykset lupaavat lisätä tuottavuutta, vähentää tarvittavan koo-
din määrää, sekä parantaa koodin laatua, parantaen näin samalla ylläpidettävyyttä. On
kuitenkin tärkeää huomata se, että monikieliohjelmointi kasvattaa tarvittavan tiedon mää-
rä, mikä vaikuttaa suoraan ylläpidettävyyteen sekä tarvittavaan työkalutukeen.



www.manaraa.com

III

PREFACE

This thesis work started over a year ago from my own interest to learn and use multiple
programming languages rather than stick with the one I knew the best. At that time a
new Vert.x web framework was introduced and it offered new approaches to polyglot
programming.

This thesis work started while I was working at Solita Oy. I want to thank everyone
contributing to my idea and especially Solita postgraduate group for proofreading this
thesis on the long run. My warmest thanks go to my thesis supervisor and examiner
Professor Tommi Mikkonen for providing his expertize and finding the time for this thesis.

This thesis proved to be quite demanding, but as it evolved it was satisfactory. This
thesis allowed me to pursue my own interest in polyglot programming, thus making my-
self a better developer, and at the same time hopefully helping others to achieve the same
goal.



www.manaraa.com

IV

CONTENTS

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2. Polyglot programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Research context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Associated advantages . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 Associated disadvantages . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.5 Polyglot programming in web development . . . . . . . . . . . . . . . . 7

2.5.1 Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5.2 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5.3 Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5.4 Concurrency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5.5 Business rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.6 Polyglot software systems . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.7 Polyglot programming pyramid . . . . . . . . . . . . . . . . . . . . . . . 15
2.8 Extending the polyglot programming pyramid . . . . . . . . . . . . . . . 18

2.8.1 Improving the bounded fractal representation . . . . . . . . . . . . . 18
2.8.2 Supporting architectural decision making . . . . . . . . . . . . . . . 20

2.9 Guidelines for polyglot programming . . . . . . . . . . . . . . . . . . . 20
2.10 Poly-paradigm programming . . . . . . . . . . . . . . . . . . . . . . . . 23
2.11 Programming language features and tool support . . . . . . . . . . . . . 25

3. Polyglot programming on the Java platform . . . . . . . . . . . . . . . . . . . 28
3.1 Java platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Evolution of polyglot programming . . . . . . . . . . . . . . . . . . . . 30
3.3 Programming languages on the Java Virtual Machine . . . . . . . . . . . 32

3.3.1 Java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3.2 Groovy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3.3 Scala . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.4 Clojure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4 Vert.x framework for the modern web and enterprise . . . . . . . . . . . 37
3.4.1 Effortless asynchronous application development . . . . . . . . . . . 38
3.4.2 Verticle and Vert.x instances . . . . . . . . . . . . . . . . . . . . . . 39
3.4.3 Core services and modules . . . . . . . . . . . . . . . . . . . . . . . 40
3.4.4 Polyglot programming with Vert.x . . . . . . . . . . . . . . . . . . . 42
3.4.5 Support for new programming languages . . . . . . . . . . . . . . . 44

4. Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.1 Project structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.1.1 Web project with Java using Spring Framework and Hibernate . . . . 46



www.manaraa.com

V

4.1.2 Web project with Groovy using Grails framework . . . . . . . . . . 47
4.1.3 Web project with Groovy using Grails framework and Java legacy

domain model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.1.4 Single-page application with Vert.x framework and AngularJS . . . . 48

4.2 Web flow execution, decorators and mapping . . . . . . . . . . . . . . . 50
4.3 Form objects, binding and validation . . . . . . . . . . . . . . . . . . . . 53
4.4 Model, Repositories and Services . . . . . . . . . . . . . . . . . . . . . . 54

4.4.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.4.2 Repositories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.4.3 Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.5 View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.6 Observations on Groovy as the programming language . . . . . . . . . . 66

4.6.1 Amount of code . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.6.2 Code quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.6.3 Productivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.7 Observations in web development: traditional methods versus client-side . 67
4.7.1 Amount of code . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.7.2 Code quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.7.3 Productivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.7.4 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5. Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.1 Related work and previous results . . . . . . . . . . . . . . . . . . . . . 70

5.1.1 Example web project with Java and Scala . . . . . . . . . . . . . . . 71
5.1.2 Buypass: JRuby with existing Java libraries . . . . . . . . . . . . . . 71
5.1.3 Web based extranet: JRuby with existing Java legacy . . . . . . . . . 72
5.1.4 Au2sys: Java web application with RSpec and Watir tests . . . . . . 72
5.1.5 Required knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.1.6 Amount of code . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.1.7 Code quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.1.8 Productivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2 Discussion of the results . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.2.1 Amount of code . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2.2 Code quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2.3 Productivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.1 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80



www.manaraa.com

1

1. INTRODUCTION

Over the past decade, there has been a prominent focus on using a standard programming
language in web development projects. Such programming languages include Java, Mi-
crosoft’s technologies and PHP. Rationale behind this is that one standard programming
language is easier to use, both for developers, management when hiring and tutoring em-
ployees, and system administrators. The reasoning is valid, while it fails to reckon that the
programming environment is nominally the programming language and more so frame-
works and tools. Frameworks for collections, object-relational mapping, XML handling,
web development and web services are made to simplify the development process. De-
spite the fact that all of these frameworks are written in the same programming language,
they still introduce new abstractions and require vast knowledge to configure and use.

The rationale to utilize a standard programming language overlooks the fact that hu-
mans tend to use different languages to make expressions more effective and succinct.
Therefore, if the implementation comes more naturally in another programming language
instead of a new framework, it might prove to be a more viable solution. This approach
is coined polyglot programming, whose goal is to render simpler, more expressive and
fluent solutions by combining the best solutions from different programming languages
and paradigms.

Polyglot programming applied in software engineering introduces the use of several
programming languages in a single software system. This approach is widely adapted
and is in extensive use in web development, for example, embedded HTML and SQL or
JavaScript with CSS and HTML. Nevertheless, only limited research has been conducted
on this topic, with focus on refactoring polyglot systems or on the possible business bene-
fits of polyglot programming. The support for polyglot programming might prove essen-
tial in the future, without the need to rewrite working legacy code.

This thesis conducts thorough research on polyglot programming in web development
context and more so on the Java platform. Questions like how polyglot programming is
used in modern-day web development, how it can be used to render better solutions, and
how to use it on the Java Virtual Machine are covered. Goals are to increase developer
productivity, reduce the amount of code, improve the code quality and software maintain-
ability in web development. Polyglot programming on the Java Virtual Machine provides
several programming languages and frameworks that differ, for example, in syntax, type
system, idioms and programming paradigm, and in coding conventions and best practices.



www.manaraa.com

1. Introduction 2

Chapter 2 provides a comprehensive study on the theory and practices behind polyglot
programming, and also reveals associated advantages and disadvantages. Polyglot pro-
gramming in the context of web development is covered with examples. The structure of
a polyglot software system is studied and the polyglot programming pyramid introduced.
In addition, the polyglot programming pyramid is extended as an architectural pattern to
include also frameworks and libraries, and to support decision making when using poly-
glot programming. Basic guidelines on polyglot programming are also described. In
addition, poly-paradigm programming, and programming language features and tool sup-
port are covered. This chapter describes why, how and when polyglot programming can
be used.

Chapter 3 covers polyglot programming on the Java platform thoroughly. Java plat-
form and its evolution to support multiple programming languages on the Java Virtual
Machine is described. In addition, the runtime support of the Java Virtual Machine for
different programming languages is explained and several programming languages used
in this thesis introduced. Also a new and noteworthy Vert.x framework and its support for
polyglot programming is disclosed.

A more practical approach is taken in the Chapter 4. An example web development
project is implemented and analyzed in the polyglot programming context. The project
is implemented in both Java and Groovy as a server-side web application and also with
Vert.x and AngularJS frameworks as a JavaScript client-side single-page application. In
addition, a Groovy project with Java legacy domain model is implemented to research
possibilities in programming language interoperability on the Java Virtual Machine. This
chapter provides observations on Groovy as the programming language, and in web de-
velopment comparing traditional methods with client-side application architecture.

Chapter 5 summarizes and evaluates the observations against related work and previ-
ous results. Observed advantages and disadvantages are generalized from programming
language specific subjects to more general results of the polyglot programming approach
in the discussion of the results.

Chapter 6 concludes this thesis and presents recommendations on polyglot program-
ming. It also discusses some future directions for later studies in the context of polyglot
programming.



www.manaraa.com

3

2. POLYGLOT PROGRAMMING

The separation of languages that is forced in writing can actually be considered quite
unnatural in this multilingual world. Writers tend to break this separation because it is
too restrictive. For example journalists and historians often mix philosophic prose with
statistical facts [1; 2]. A Russian author Leo Tolstoy is an example of a polyglot literature
writer. Tolstoy frequently inserted words and phrases from French and German in his
novel War and Peace. The purpose of being as expressive and effective in language as
possible, not as a device of arrogance or pedantic. Some rare and inventive authors are
known even to make up their own languages, for example, J. R. R. Tolkien. [3]

Each language has innumerable amount of nuances that makes it more expressive and
distinct from all other languages. An author of good literature considers every word to
contribute meaningfully to the whole, meaning that the whole is not complete or correct
without that specific word. The decision is based on a careful consideration of definition,
context, connotation, sense, length, look, and the author’s general attitude towards the
word [3]. If no word in the main language of the work is just right, the author will look to
another language to provide the necessary depth and exactness.

Tolstoy mixed languages because he understood that in certain situations, a language
can outdo another language by being more expressive, effective, succinct, vivid, et cetera.
To make this point more valid, consider the novel War and Peace. The novel is originally
written in Russian, but despite translation to English, the phrases that Tolstoy inserted
from other languages than Russian were not translated to English. This emphasize the
definite importance for those pieces of the text. [1; 3]

Tolstoy is not the only author to mix languages. Mixing languages is just another
literature tool to exploit polyglot literature. Vladimir Nabakov’s novel Lolita is written
mainly in English but contains a lot of French phrases. Nabakov used phrases filled
with connotation with well placed French colloquialism. A literal translation for “Joie de
vivre” is “Joy of living” which loses all the rich connotations that reside in the French
phrase. In English it is used to express a cheerful enjoyment of life. Furthermore in
French it can be a joy of conversation, joy of eating, joy of anything one might do. It is
seen as joy of everything, a comprehensive joy, a philosophy of life. [4]

Another example is the French phrase “Fin de siècle” used by Alex Ross in his first
book, The Rest Is Noise: Listening to the Twentieth Century. A literal translation is the
“end of the century” which refers to an English idiom “Turn of the century”. Turn of



www.manaraa.com

2. Polyglot programming 4

the century refers to the transition from one century to another, and it is used to indicate
a distinctive time period either before or after the beginning of a century or both before
and after. The translation loses the rich connotation that the French phrase encompasses,
meaning as it was felt to be a period of degeneration, but at the same time a period of
hope for a new beginning. [4]

Programming languages do not differ from natural languages. Each programming lan-
guage has its own nuances that makes it distinct and expressive in ways that other pro-
gramming languages are not. This can be seen as a justification for intermingling different
programming languages. Watts [3] argues that programming languages should not com-
pete, they should rather be mixed together to form and achieve the perfect programming
language, and that no singular programming language can achieve this alone. [3; 5]

Software that is composed of artifacts written in multiple programming languages is
pervasive in modern-day software business. The idea of polyglot programming is to ren-
der more natural and simpler solutions by combining the best available solutions from
different programming languages and paradigms. Thus polyglot programming is also
poly-paradigm programming. Polyglot programming identifies the realization that there
is “No Silver Bullet”, a tool best at solving all problems [6]. In software development
this entail an examination of programming languages, frameworks and development tools
most suitable for the task at hand.

Polyglot programming has also been known as multi-language programming [7; 8; 9;
10]. Lately it has also been referred to as cross-language programming merely applied in
the field of code analysis and refactoring [11; 12]. Similar ideas are also expressed in lan-
guage oriented programming which is a development methodology focusing on creation
of domain-specific languages [13; 14; 15; 16; 17; 18; 19].

2.1 Definition

The term polyglot programming was first introduced in software development context in
2002 [20]. A hypothesis was made for several programming languages within one en-
vironment. Later authors tend to use slightly different approaches when they describe
polyglot programming [13; 21]. The best description to work with was given by Watts as
“programming in more than one language within the same context” [1], which postpones
the definition onto what the context is. Definition of using multiple programming lan-
guages on the same managed runtime was suggested [22]. Managed runtime is definitely
polyglot programming, but the definition should not restrict the architecture.

From a developer’s perspective, the context is considered as people working on the
project. And more so, the context depends on the number of teams and the way the devel-
oped applications are integrated together. Polyglot programming is constituted even if one
team uses different programming language regardless of the chosen architecture. If the
integration between parts of an application developed by two separate teams using differ-



www.manaraa.com

2. Polyglot programming 5

ent programming languages is tight, it is considered as polyglot programming. However,
when the separate teams do not need information about programming languages the other
teams are using, an application is no longer considered as polyglot. Denoting that the
parts of an application could be seen as distinct entities. An example would be a service-
to-service application in which knowledge of the interfaces is the only requirement.

Fjeldberg [23] defines and expands the previously described concept of polyglot pro-
gramming within a context. The formal definition of polyglot programming by Fjeldberg
follows:

“programming in more than one language within the same context, where
the context is either within one team, or several teams where the integra-
tion between the resulting applications require knowledge of the languages
involved” [23].

2.2 Research context

A literature study will be conducted to discover how polyglot programming is used in
modern-day web development. The key is to scrutinize how polyglot programming can
be used to render the best, meaning expressive, effective, succinct, and fluent solution
to the problem at hand. A case study will be conducted from the developers perspec-
tive to discover how to implement polyglot programming on the Java Virtual Machine.
The implementations will be evaluated against related work and previous results from
two project implementations by Lähteenmäki [24] and three case study projects by Fjeld-
berg [23]. The following research questions form the basis for the research:

RQ1: How polyglot programming is used in modern-day web development?
RQ2: How to use polyglot programming to render the best solution?
RQ3: How to implement polyglot programming on the Java Virtual Machine?

2.3 Associated advantages

Definition and measurement of productivity are much debated aspects of programming
languages. Two of the most used metrics are lines of code (LOC) [25; 26] and function
points [25; 27] per unit time. Regardless of metrics, an additional problem of assessing
the productivity of different programming languages exists, although it has been claimed
that productivity does not depend on programming language [28]. Delorey [25] presents
evidence to the contrary based on the assumption of insufficient data. Due to the nature
of the problems within the scope of the productivity measurement, any findings from case
studies are hard to generalize. Problems include human factors like motivation, skill and
experience, and environmental factors like integrated development environment (IDE)
and library support, and also factors on geographical distribution of projects [29; 30; 31;
32; 33; 34].



www.manaraa.com

2. Polyglot programming 6

A premise for increased productivity comes from the main idea of polyglot program-
ming to combine and integrate the best solutions from different programming languages
thus rendering simpler solution to the problem at hand [5; 23]. A suitable programming
language for a particular problem will normally render a shorter solution in terms of LOC
because of the built-in primitives and idioms. Following the assumption that developers
produce the same amount of lines of code regardless of programming language, they use
high-level languages that require less lines of code to be more productive [28]. In addi-
tion to reduced LOC, the thought process of a developer will normally be shorter because
the solution comes naturally in the appropriate programming language. The work can be
done on the problem and without the required low-level plumbing. For example, taking
advantage of static polymorphic type-checking in functional programming, a large class
of programming errors on race conditions and deadlocks in message passing between
processes can be caught at compile time [35; 36]. The nature of interpreted programming
languages can further increase productivity because no compile cycles are needed.

A general realization in web development is that developers are more expensive than
hardware which means that the importance of a developer’s productivity transcends that
of runtime performance [23]. This results in shorter development cycle providing faster
time-to-market or the possibility of fewer developers working on the same application.
However, the development phase of an application is only a part of the life cycle, span-
ning often from 5 to 10 years. Therefore, the increased productivity from choosing an
appropriate programming language would become even more important in the mainte-
nance phase [37]. Furthermore the application written with less lines of code will have
fewer lines of code to maintain, as well as fewer instructions to follow. The effort to
maintain an application increases exponentially with the number of instructions to follow,
and therefore the amount should be kept in minimum [28; 37]. Research also reveals
that the number of faults per lines of code increases with the total lines of code in the
application [38; 39; 40].

2.4 Associated disadvantages

Knowledge of different programming languages is essential in order to benefit from poly-
glot and poly-paradigm programming [5; 23]. This results in a problem, because not all
developers have vast knowledge over different programming languages and some are not
even interested in learning new ones [41]. Although it is suggested that developers should
learn at least one new programming language per year to evolve [42], in many cases this
has been proven not realistic [43; 44], and also in many situations learning a new pro-
gramming language takes more than a year [45; 46]. The learning curve becomes even
steeper when developers have accustomed to a single programming language and the in-
frastructure, tools and certifications built around it. Therefore, the required amount of
knowledge for developers is increased especially in the hiring process and when selecting



www.manaraa.com

2. Polyglot programming 7

programming languages to use [5; 23]. In addition, different problem areas should also
be assessed.

Graham [47] presents a conceptual hierarchy with a more expressive and succint pro-
gramming languages at the top. The so-called blub paradox after a hypothetical pro-
gramming language of average complexity called “Blub” states that anyone preferentially
using a particular programming language knows that it is more powerful than some, but
not that it is less powerful than others. Thus writing in some programming language
means thinking in that programming language, and that typically programmers are satis-
fied with whatever programming language they happen to use, because it dictates the way
they think about programs.

Administration phase requires a sufficient knowledge of the programming language
used in order to conduct maintenance. The administration of a large application with a
long life cycle, spanning from 5 to 10 years, is likely conducted by different developers
or even by a different company than that who developed the application. This is further
enhanced every time a new programming language is added, resulting in decrease in the
pool of developers with enough knowledge to maintain the application [41; 48]. In ad-
dition, using a new paradigm parallel to a previously used one will make following the
application code even harder.

Developers using Java and .NET have accustomed to a diverse and comprehensive
IDE support with integrated and plugin features like version control, syntax highlighting,
refactoring, debugging et cetera. A support for a new programming language will nor-
mally only be implemented if it gains enough traction and popularity, because adding a
support requires usually a tremendous amount of work [23; 49]. Therefore, the overhead
caused by using different programming languages will increase if the tools do not offer
interoperability, and different tools must be configured and used.

2.5 Polyglot programming in web development

Front-end code standards and best practices today separate the presentation, content and
behavior. By maintaining consistency in coding styles and conventions the burden of
maintaining legacy code can be eased, and the risk of breakages in the future can be
mitigated. Optimized page loading, efficient performance and code maintainability can
be achieved by adhering the best practices.

Presentation is separated from the content by using cascading style sheets. JavaScript
is commonly used to make the web pages more interactive, and to provide more vivid and
genuine behavior. JavaScript can also be used to interact with server-side programming
languages, and with databases where the information is stored. This means that most
web applications are a polyglot system, and that they use at least four different program-
ming or specification languages in development. Thus web development has always been
polyglot [21].



www.manaraa.com

2. Polyglot programming 8

Presentation layer

Business logic layer

Data access layer

Data
source

Figure 2.1: Three-tier architecture represents a polyglot software system.

Web applications usually follow three-tier architecture, shown in Figure 2.1, or some
of its derivatives, which can all be considered as a representation of a polyglot software
system. In addition, polyglot programming using a managed runtime is becoming more
popular in web development because of the increasing support for polyglot programming
on the Java and .Net platforms.

2.5.1 Development

Excellent high-productivity frameworks are the main reason for the increased popularity
of polyglot programming in web development. In addition, frameworks created using
dynamic programming languages promise even further increase the developer productiv-
ity and provide faster turnover. Usually these frameworks include support for generat-
ing JavaScript. The most important of these high-productivity web frameworks include
Groovy based Grails, Ruby based Ruby on Rails, and Python based Django. The impor-
tance of these frameworks is emphasized by the fact that frameworks in other program-
ming languages use same ideas.

The common nature of web projects is that the web interface is likely to change more
often than the services it is built upon. This indicates that a dynamic programming lan-
guage is a good choice since it offers faster turnover. This is further enhanced in agile
methodologies which involve, for example, rapid prototyping [50]. This model allows
the web interface to work as a mediator between the request and the core functionality
located on the server-side providing the heavy lifting.

Advanced frameworks speed up the productivity, but sometimes at the cost of perfor-
mance. Although the decrease in performance is not that important in web development
to some extent. This is because the bottleneck is usually the users Internet connection and
not the application performance. It does not matter if the application uses 100 ms instead
of 10 ms, as long as it takes 1 second to send the data. [23]



www.manaraa.com

2. Polyglot programming 9

Polyglot programming is only useful if it gives an advantage. For example, an over-
head caused by XML file parsing can be removed if a programming language with a literal
XML support like Groovy or Scala is used instead of a general-purpose programming lan-
guage with an XML parser. Groovy and Scala support writing XML directly within the
programming language’s syntax, providing more natural way of data interaction using the
familiar dot notation. The same principle works also with Groovy and JavaScript when
handling JavaScript Object Notation (JSON) messages. In addition, there has been a
recent rise in next-generation NoSQL data storages with JSON-based protocol like Mon-
goDB and FleetDB that provide implementations in several programming languages.

Global consulting firm ThoughtWorks started 40 % of their projects in 2007 in US
with Ruby [51]. In three years period, Ruby was used in 41 projects, most of them
web site projects which included Ruby on Rails framework, and the use of Ruby was
evaluated as success (Figure 2.2). Although the results are subjective, they reflect the fact
that different programming languages can be more productive. Thus Ruby became an
important platform beside the major Java and .Net platforms at ThoughtWorks [52]. In
addition, polyglot programming is considered to be a part of a growing opportunity worth
over 35 billion dollars by 2015 [53].

(a) The comparison of Ruby as
the correct choice of platform
for projects.

(b) The increased productivity gained by using Ruby for
projects.

Figure 2.2: Subjective, qualitative assessments of Ruby projects at ThoughtWorks be-
tween 2006 and 2008. [52]

Polyglot programming might present some considerable drawbacks depending on tool
support and programming languages used. For example, refactoring a program written
using a dynamic programming language is difficult, because the IDE cannot resolve the
type information of a given variable since it is only revealed at runtime [54]. While
developers could use automatic refactoring tools for Java parts, they would manually need
to refactor Ruby parts.



www.manaraa.com

2. Polyglot programming 10

2.5.2 Testing

Testing is a key concept in many of the new agile development methodologies, including
test-driven development (TDD), behavior-driven development (BDD), and extreme pro-
gramming (XP). The recent increase in popularity of these methodologies have also made
automated testing more popular. [55; 56; 57]

Testing is a good way to introduce polyglot programming in software development
because the test code is not an integral part of the application. Testing is a continuous
activity that should cover the whole application. Automated testing gives developers the
confidence to rely on the implementation to work after changes in the code. This is
especially critical in dynamic programming languages which lack of static type safety
and compile cycle. In addition, polyglot programming does not imply discarding what
has already been implemented. The benefits from better suited programming languages
can be leveraged even in existing infrastructures.

Testing complex code is a common task which can benefit from polyglot programming.
When the code relies on databases and web services the consumption of time increases
dramatically, and small changes in database might brake all tests. As a solution, mock
and stub objects are created to mimic the behavior of other objects in purpose to test in
isolation [58]. Creating mock object expectations can be time consuming due to Java’s
lack of flexibility required to allow objects to mimic others.

Ford [22] suggests writing the tests, and in this case only the tests, using a more suitable
programming language. The example Java code shown in Program 2.1 uses a popular
mock object library JMock [59] to test that the Order class interacts correctly with the

1 public class OrderInteractionTester extends MockObjectTestCase {
2 private static String TALISKER = "Talisker";
3

4 public void testFillingRemovesInventoryIfInStock() {
5

6 Order order = new OrderImpl(TALISKER, 50);
7 Mock warehouseMock = new Mock(Warehouse.class);
8

9 warehouseMock.expects(once()).method("hasInventory")
10 .with(eq(TALISKER),eq(50))
11 .will(returnValue(true));
12 warehouseMock.expects(once()).method("remove")
13 .with(eq(TALISKER), eq(50))
14 .after("hasInventory");
15

16 order.fill((Warehouse) warehouseMock.proxy());
17

18 warehouseMock.verify();
19 assertTrue(order.isFilled());
20 }
21

22 }

Program 2.1: JMock test for correct interaction between the Order class and the Ware-
house class. [22]



www.manaraa.com

2. Polyglot programming 11

Warehouse class through its interface. Test verifies that the proper methods are called and
that the result is correct.

The same example is given in Program 2.2 using a powerful mock object library
Mocha [60] for Ruby, and thus JRuby programming language on the Java Virtual Ma-
chine. The latter implementation is much more concise and fluent due to dynamic nature
of the programming language. In addition, the interfaces (Warehouse) can be directly in-
stantiated because JRuby wraps Java objects in proxy classes. Also all the pertinent Java
classes on the tests classpath can be easily imported in JRuby by requiring the all-inclusive
JAR file require "Warehouse.jar". [22]

1 class OrderInteractionTest < Test ::Unit ::TestCase
2 TALISKER = "Talisker"
3

4 def test_filling_removes_inventory_if_in_stock
5 order = OrderImpl.new(TALISKER, 50)
6 warehouse = Warehouse.new
7 warehouse.stubs(:hasInventory).with(TALISKER, 50).returns(true)
8 warehouse.stubs(:remove).with(TALISKER, 50)
9

10 order.fill(warehouse)
11 assert order.is_filled
12 end
13

14 end

Program 2.2: Mocha test for correct interaction between the Order class and the Ware-
house class. [22]

The runtime performance of the programming language used in testing is not important
because the test code will not be run in production. Therefore, developer’s productivity
transcends the runtime performance. The developer productivity can be increased, for
example, by using interpreted languages, because they enable tests to be run without
compilation.

2.5.3 Deployment

Software deployment is the process of making a software available for use. The general
deployment process is a series of interrelated activities and possible transitions between
them. These activities may take place both at the producer site or at the consumer site.

Deployment should be interpreted as a general process which is customized according
to specific requirements and characteristics of every software system. The variability and
complexity of software systems makes them unique. Deployment process contains ac-
tivities like release, installation and activation, deactivation, adaptation, update process,
automated built-in activities, version tracking, uninstallation, and software system retire-
ment.

Software systems are deployed on a software platform. The most commonly used
software platforms are the .Net and the Java platforms, both of which support polyglot



www.manaraa.com

2. Polyglot programming 12

programming extensively. Software platforms dictate which programming languages can
be used in software development. In addition to traditional software platforms, there
exists several cloud application platforms which provide their own deployment processes
and methodologies.

2.5.4 Concurrency

Multicore processors introduced a new challenge for developers, namely how to best uti-
lize these processors with multiple cores using the existing tools. Concurrency has proven
to be one of the hardest aspects of imperative and object oriented programming. Concur-
rency is done using threads which introduce race conditions and risk of deadlocks due to
different threads modifying the same variables. Since multicore processors entered the
mainstream in software development, the concurrency shifted from being a problem of
some developers into an important aspect for all developers. Therefore, managing threads
and concurrency should be made easier. [61]

Some of the issues in concurrency can be resolved by shifting programming paradigm.
Functional programming does not involve any use of variables as opposed to imperative
programming. Since there exists no states to change and there are no shared states be-
tween processes, no function can have any side effects, and no data is shared directly,
thus risk of deadlocks is removed. This allows referential transparency, meaning expres-
sions can be evaluated in any order, which makes it easier to implement concurrent and
transactional software [62; 63].

Erlang [64] is a functional programming language designed for concurrency. It achieves
data sharing using message passing which is similar to communication between people,
which can be considered a more natural programming idiom [65]. Ghodsi [66] bench-
marked Yaws [67] which is a web server completely written in Erlang against Apache [68]
web server, Apache died at about 4000 parallel sessions while Yaws still functioning with
more than 80000 parallel sessions [66]. While no benchmark can go unchallenged [69].
Erlang is suitable for the problem domain. Erlang’s approach to concurrency is to start a
very light weight Erlang process for each state machine requiring concurrency. This ap-
proach is more natural in terms of implementation than thread pools, asynchronous input
and output, or thread per connection systems. [70]

Functional programming approach is suitable when in need for concurrency, however
not when developing user interfaces. Polyglot programming allows parts of the system to
be implemented with concurrent functional programming languages and other parts with
more suitable general-purpose programming languages. Facebook used this approach in
the implementation of their chat client, by integrating existing infrastructure written in
C++, PHP and JavaScript with Erlang chat client [71].

Facebook also developed the Apache Thrift [72] software framework to expedite de-
velopment and implementation of efficient and scalable cross-language back-end services.



www.manaraa.com

2. Polyglot programming 13

Primary goal was to enable efficient and reliable communication across different program-
ming languages. Thrift combines a software stack with a code generation engine to build
services that work efficiently and seamlessly between C++, Java, Python, PHP, Ruby, Er-
lang, Perl, Haskell, C#, Cocoa, JavaScript, Node.js, Smalltalk, OCaml, Delphi, and other
programming languages. [73]

Web servers provide different approaches to concurrency in web development. Apache
is the most used web server in the world holding more than half of the market (Figure 2.3).
Although the main design goal of Apache is not to be the fastest web server, it performs
similarly to other high-performance web server. Apache provides several approaches
to concurrency by implementing multiple architectures to better match the demands of
each particular infrastructure. It provides a variety of MultiProcessing Modules (MPMs)
which allow Apache to run in a process-based, hybrid (process and thread) or event-hybrid
mode [74]. This implies that it is important to choose the correct MPM and configuration.
Apache is designed to reduce latency and increase throughput by ensuring reliable and
consistent request processing in reasonable time frame.

Figure 2.3: Market share of web server developers based on all sites in July 2013. [75]

The nginx [76] web server processes requests using an asynchronous event-driven ap-
proach, instead of the Apache web server model with threaded or process-oriented ap-
proach. The nginx outperformed the previous Apache 2.2 series for delivering static
pages, although Apache was found to be significantly faster for delivering dynamic pages.
The Apache Foundation decided to address this issue by providing a high-performance
multithreaded version which uses several processes and several threads per process [74].
This new architectural approach was implemented in the current Apache 2.4 series, which
now provides equivalent or even slightly better performance than other event-driven web
servers [77].



www.manaraa.com

2. Polyglot programming 14

Better concurrency will improve the scalability of the system, because the overhead of
spawning new processes is decreased. The independent nature of the processes implies
that the implementation of load distribution on multiple cores and machines becomes
easier, and thus the hardware is better utilized. [23]

2.5.5 Business rules

Business logic is an integral part of the implementation source code in most modern-
day applications. This makes verifying the correctness of the implemented business rules
difficult for the domain experts, which also hinders the process of chancing the business
rules, related to quite frequent changes in business, difficult for domain experts. [23]

Fields [78] describes a Business Natural Language (BNL), a subset of domain-specific
languages, as a solution to implement business rules. BNL languages are designed to im-
plement a domain vocabulary similar to the language used by domain experts, thus they
could verify and maintain the business rules themselves. Therefore, the intent of the appli-
cation would be clearer for the domain experts because they understand the rules [79]. [78]

Rules engine is an alternative for BNL. The advantage of rules engine is that there is
no need to implement a parser for the language, but on the other hand the rules engine
restricts the expressiveness by forcing the syntax. There exist several rules engines for
different platforms. Drools [80] and Jess [81] are popular rules engines for the Java plat-
form, InRule [82] for the .Net platform, and BizTalk Server [83]. Programming languages
that follow logical programming paradigm are also rules engine languages.

2.6 Polyglot software systems

Fjeldberg [23] propose a degree of polyglotism – usage of multiple programming lan-
guages – in an application to differentiate the use of polyglot programming. Proposed
levels of polyglotism are integration, organization of code, the processes that run the pro-
gramming languages, and the data being manipulated. Integration is either networked or
non-networked, the organization of code distinguish that is the code written inside same
or different files. Either the same or separate processes are used to run the different lan-
guages, and the languages manipulate either the same object or the same data. Table 2.1
describes the levels of polyglot programming for different architectures.

Table 2.1: Levels of polyglot programming in different polyglot systems.

Architecture Integration Organization Process Data/object
SOA Networked Different files Different Same data
Managed runtime Non-networked Different files Same Same object
HTML++ server Non-networked Different files Different Same data
HTML++ client Non-networked Same file Same Same object
CI system Non-networked Different files Different Same data



www.manaraa.com

2. Polyglot programming 15

Example architectures for utilizing polyglot programming are service-oriented archi-
tecture (SOA), managed runtime, continuous integration (CI) system and embedded poly-
glotism where different languages are presented in the same file. HTML in conjunction
with CSS, JavaScript and a server-side language is an example of a polyglot program
(referred as HTML++ for abbreviation).

2.7 Polyglot programming pyramid

Polyglot environment has two essential aspects, the platform used for the integration and
the different programming languages supported by the given platform. The possibility
to create a new infrastructure without need to rewrite old legacy code has proven essen-
tial [84; 85]. The recent development on software platforms is one of the reasons why
polyglot programming has the means for success.

Polyglot programming pyramid is used to describe and categorize the programming
languages and specification languages used in a polyglot software system [13; 86; 87].
Polyglot programming pyramid presents three potential layers for different programming
languages as shown in Figure 2.4 [13].

Dynamic layer

Stable layer

Domain layer

Figure 2.4: Polyglot programming pyramid.

Statically typed powerful programming languages tend to gravitate towards the needs
of the stable layer. The less powerful general-purpose technologies tend to ascend to
the top layer, and the dynamic layer in the middle consist a rich variety of programming
languages with the most flexibility. However, in many cases the dynamic layer tends to
overlap with the adjacent layers. In addition, the three layers of the polyglot programming
pyramid represent polyglot programming as a form of separation of concerns, where the
layers represent patterns as described in Table 2.2.

The layers presented in the polyglot programming pyramid are organized with the sta-
ble layer as a wide base [87]. Bini [13] argues that the domain-specific layer should be
the largest and that the dynamic layer quite often includes more than one programming
language. The polyglot programming pyramid can be inverted to present the stable layer



www.manaraa.com

2. Polyglot programming 16

Table 2.2: Three layers of the polyglot programming pyramid.

Layer Description Examples
Domain-specific Domain-specific language; tighly

coupled to a specific part of the ap-
plication domain

HTML, CSS, Web tem-
plating, SQL

Dynamic Rapid, Productive, Flexible devel-
opment of functionality

Groovy, Clojure, Jython,
JRuby, JavaScript

Stable Core functionality, stable, well-
tested, performant

Java, Scala

as the tip of the pyramid providing the base as shown in Figure 2.5. This allows the
dynamic layer in the middle to be divided into smaller parts, for example, based on pro-
gramming language or functionality. Also the different domain-specific languages are
now represented as smaller pyramids standing upside down. Bini [13] names this strategy
as bounded fractal representation. [13]

Dynamic layer

Domain layer

Stable layer

Figure 2.5: Polyglot programming pyramid is inverted to reflect the amount of used pro-
gramming languages in each layer.

The bounded fractal representation forms the polyglot system which consists of these
smaller pyramids. The pyramids have no restrictions, and they can all be the same pro-
gramming language and system, or multiple different ones. Organization of the smaller
pyramids depends heavily on the application or system being developed. Figure 2.6 rep-
resents an example polyglot system with a combination of Clojure, Scala and JavaScript.
Any imaginable combination can be used, although it is important to keep in mind that
the combination should be best suited for the problem at hand [13].

Domain layer defines the actual domain rules, which in general means using one or
more domain-specific languages. This model sees the DSLs as the same layer regard-
less if they are internal or external. Domain layer is a part of a system which needs to
be adaptive enough, so that it is possible to change rules in production. Domain layer
should allow domain experts to manage it. The programming languages in domain layer



www.manaraa.com

2. Polyglot programming 17

DSL DSL DSL

Clojure JavaScript

Scala

Figure 2.6: Bounded fractal representation of an example organization of a polyglot
system with a combination of Clojure, Scala and JavaScript.

are mostly external DSLs like HTML and SQL, but it can also include general-purpose
programming languages like Groovy, Ruby or Python which support building internal
DSLs [23; 79]. [13]

Ford [21] argues that the dynamic layer is more about essence and not so much about
dynamic. Problem is that even with a programming language like Scala which is usually
classified as an essential programming language, it requires compilation. Bini [13] con-
siders compilation as a ceremony, meaning that it is one extra thing developers do not
want to care about when writing most of the application code. This is the main reason
why this layer needs to be dynamic. The dynamic layer includes programming languages
like Clojure, Groovy, Ruby, Python and JavaScript. [13]

Stable layer is the core set of axioms, the hard kernel or the thin foundation that the
system can be developed in. It thrives for performance with static type checking, although
there would be advantages having this layer written in an expressive programming lan-
guage. The main idea of this layer is to make the trade-off in giving up static typing
smaller. The stable layer on the bottom provides the resources and services for dynamic
layer to utilize. [13]

Stable layer encapsulates another important feature, it is where all external APIs are
defined. The performance of the APIs need to be solid since other clients rely on them.
This way the implementations for the APIs live in the dynamic layer, not in the stable one.
This approach allows developers to take advantage of static type information for APIs
while retaining full flexibility in implementation. The stable layer provides the necessary
services needed for everything to function, and it should be fairly small compared to
the rest of the application. Stable layer include programming languages like Java and
Scala. [13]



www.manaraa.com

2. Polyglot programming 18

2.8 Extending the polyglot programming pyramid

Polyglot programming pyramid represents the programming languages used in a polyglot
system. Stable layer at the bottom represents the implementation of the core functional-
ity and is usually written with a single programming language, for example, to provide
efficient Java Hibernate database interaction. Stable layer provides its services for the
dynamic layer to use, thus benefiting from static typing and good type safety. Dynamic
layer is to maximize productivity in web development by using several programming
languages side by side, for example, Groovy and JavaScript. Domain layer represents
domain-specific programming and specification languages which provide solutions and
techniques to certain problem domains, for example, HTML for markup, CSS for presen-
tation semantics, and SQL for managing data.

2.8.1 Improving the bounded fractal representation

The bounded fractal representation by Bini [13] has been criticized to represent only a
layered structure of a polyglot software system instead of a fractal structure [13]. Fractal
typically involves a self-similarity pattern, where fractals are the same from near as from
far [88]. The definition of fractal states that fractals exclude trivial self-similarity and
include the idea of a detailed pattern repeating itself [89]. Thus the idea of polyglot
programming pyramid representing different programming languages in a layered manner
requires improvement.

Programming environment is nominally the programming language and more so frame-
works, libraries and tools. Excellent frameworks and libraries are the main reason for the
increased popularity of using polyglot programming in web development. The fractal
representation can thus be improved by introducing frameworks and libraries, and more
so by assessing their contents. Although some principles of the layer separation has to
be neglected when going deeper into the levels of fractal representation. Therefore, the
separation of programming languages to stable and dynamic layer based on compilation,
and static versus dynamic typing, is to be considered only when representing solely pro-
gramming languages of a complete polyglot system.

Consider an example web development project shown in Figure 2.7 with a stable layer
providing a well tested Java Hibernate database interaction as a core functionality. The
dynamic layer is used for rapid web development to provide fast turnover. Therefore,
the front-end of the application is implemented using Groovy and its high-productivity
web framework Grails which embraces the convention over configuration paradigm. In
addition, JavaScript and its powerful jQuery library is used to provide enhanced and more
dynamic web content. The domain layer is used to identify specific areas of the applica-
tion like the concatenated HTML markup and CSS presentation semantics, and SQL used
in collaboration with Hibernate.



www.manaraa.com

2. Polyglot programming 19

HTML SQL CSS

Groovy JavaScript

Java

Figure 2.7: Polyglot programming pyramid of an example project.

Polyglot programming pyramid by Bini [13] clearly lacks information in documenta-
tion of an polyglot system, because only programming languages are represented. Impor-
tant decisions like using Hibernate in conjunction with SQL for object-relational mapping
and database interaction, or Grails framework for rapid web development is not docu-
mented. In addition, the domain layer gives only a vague abstraction with none or little
value by specifying DSLs like HTML and CSS. Therefore, by including frameworks and
libraries as shown in Figure 2.8a, and opening them up when necessary as shown in Fig-
ure 2.8b, it is possible to get much more detailed information about the polyglot system
and its structure.

HTML SQL CSS

Grails jQuery

Groovy

(a) Including frameworks to polyglot
programming pyramid.

GSP Hibernate i18n

Spring 
MVC

Spring 
DI

Grails

Gant Tomcat

(b) Polyglot programming pyramid
opening up frameworks.

Figure 2.8: Improving polyglot programming pyramid fractal representation by support-
ing and opening up frameworks.

Thus the enhancement on the polyglot programming pyramid makes it possible to
document polyglot software systems more specifically. In addition, the separation of
concerns is utilized in a deeper manner.



www.manaraa.com

2. Polyglot programming 20

2.8.2 Supporting architectural decision making

Patterns capture existing, well-proven experience in software development. They promote
good design practice build on the collective experience of skilled software engineers.
Patterns are used to construct software architectures with specific properties dealing with
certain, recurring problem domain in the design or implementation of a software system.
Experts working on a particular problem, often tackle it by recalling a similar problem
they have already solved. The essence of the previous solution is reused to solve the new
problem at hand. It is quite uncommon to invent a new approach completely distinct from
existing solutions. [90; 91; 92]

Web softwares are prone to change requests, whether updating the look and feel or
extending the functionality of an application. Even upgrading to a new release of used
frameworks can imply changes to the source code of an application. Web development
is usually fast phased and the application is always evolving. Building a software system
with the required flexibility may prove to be ineffective and laborious when using a single
programming language. The selected programming language will dictate the program-
ming paradigm and idioms, thus restrict to certain approaches.

Web development allows and practically recommends to embrace several different pro-
gramming languages. Different programming languages are used to solve different prob-
lem domains of the web application. Best practices and front-end code standards separate
the presentation, content and behavior of the software system. In addition, web applica-
tions usually follow the three-tier client-server architecture in which the user interface,
business logic, data access are developed and maintained as independent modules.

When developing such an interactive and polyglot software system the changes to the
different layers of the polyglot system should be easy, and non-interactive to adjacent
layers. To solve the problem, the tree layers of the polyglot programming pyramid fur-
ther represent polyglot programming as a form of separation of concerns. Therefore, the
polyglot programming pyramid can be considered as an architectural pattern to support
decision making and documentation when developing polyglot software systems using
several programming languages.

2.9 Guidelines for polyglot programming

After making the decision to experiment with multiple programming languages, the project
should be revised against the layers of the polyglot programming pyramid [93]. Table 2.3
highlights project areas suited for these three layers in a project. Identifying the scenario
that could be resolved with an alternative programming language is just the beginning. It
is more important to evaluate whether utilization of an alternative programming language
is expedient. Evans and Verburg [87] propose five useful criteria to question when evalu-
ating a technology stacks. Risk exposure of the project area should be revised and the ease



www.manaraa.com

2. Polyglot programming 21

of interoperability with Java considered. Tooling support for an alternative programming
language should be charted. The learning curve for a new programming language should
be evaluated and the ease of hiring experienced developers in that alternative program-
ming language considered. [87]

Table 2.3: Project areas suited for domain-specific, dynamic, and stable layers.

Layer Example problem domains
Domain-specific Build, Continuous Integration, Continuous Deployment, Dev-

ops, Enterprise Integration, Pattern modeling, Business rules
modeling

Dynamic Rapid web development, Prototyping, Interactive administra-
tive and user consoles, Scripting, Tests (such as for test- and
behavior-driven development)

Stable Concurrent code, Application containers, Core business func-
tionality

Consider a stable piece of core payment-processing Java software handling millions of
transactions per day. Furthermore the code has plenty of dark corners with low test cov-
erage. This reveals definitely a high-risk area for a new language to be added, especially
due to the lack of test coverage and a pool of developers who understand it in detail. But
in consideration of a complete system, there is more into it than just the core processing.
This situation clearly cries out for better tests and test coverage which in contrast is low-
risk. Scala with its supreme ScalaTest framework would remove the boilerplate generated
with JUnit still enabling to produce familiar JUnit-like tests. Improved developer produc-
tivity and test coverage would be achieved after the initial learning curve. ScalaTest also
provides a way to introduce behavior-driven development process. Comprehensive and
advanced testing comes extremely pragmatic when the core needs refactoring or func-
tional changes, whatever the chosen programming language is. [87]

Another low-risk area for a programming language try out would be developing a
noncritical web console for administering the static data behind the payment-processing
system. The development team already knows Struts and JSF but do not have any enthu-
siasm for either technology. An obvious choice would be Grails web framework which is
backed up by a developer buzz and recent studies suggesting it as the best-available web
framework for productivity [94]. Focusing on a limited pilot in a low-risk area would
allow ease of termination of the project or switching the technology stack without much
disruption. [87]

One of the main reasons why organizations hesitate to introduce a new programming
language into their technology stack is the fear of loosing the existing value of all pre-
viously written Java source code. In contrast, by selecting an alternative programming
language that runs on the Java Virtual Machine (JVM) it turns out to be about maximiz-
ing the existing value of the codebase without discarding any working code. By using an



www.manaraa.com

2. Polyglot programming 22

alternative programming language on the JVM as a part of the system, the expertise of
those developers can be used in supporting the existing environment. This can be used
to help reduce risk by alleviating any worries that production managers might have about
supporting the new solution. [87]

Good development environment is often taken for granted since Java developers have
for years benefited from great tooling support due to its maturity. Most developers under-
estimate the time they save once they get comfortable with the powerful integrated devel-
opment environments and build and test tools, which enable rapid development to produce
high quality software. Some of the alternative programming languages like Groovy have
also had longstanding IDE support for compiling, testing and deployment. However, not
all of the alternative programming languages have reached the same level of maturity
when it comes to the development environment support. Despite that, for example, the
fans of Scala feel that the power and conciseness of the programming language itself
more than makes up for the imperfections of the unpolished generation of IDEs. Another
related issue appears when alternative programming languages develop powerful tools
only for their own use. These tools might not be well adapted to another programming
languages, for example, the powerful build tool Leiningen for Clojure. This reveals a
need for careful consideration when dividing up the project, especially in deployment of
distinct but interoperable components. [87]

Even though a pragmatic developer should learn a new programming language per
year [42], it is always time consuming [45; 46], and more so when introducing a new
paradigm. Most Java developers are familiar only with the object-oriented architecture
and C-like syntax which would benefit in favor of Groovy. When shifting a paradigm
away from the familiar the learning curve gets definitely steeper. Scala as a hybrid
programming language is an example in bridging the gap between object-oriented and
functional programming paradigms. An extreme alteration from the object-oriented Java
towards completely functional Clojure with Lisp like syntax may represent substantial re-
training requirements for the developers. A viable alternative is to introduce JVM incar-
nations of existing well-established programming languages like Ruby and Python, pro-
viding thorough insight into a non-Java programming language interpreted on the JVM.
However, reimplemented programming languages might pose a threat since many existing
packages and applications are only tested against the original implementation. [87]

Similarly to developers, organizations have to be pragmatic. Inside an organization,
the developers and development teams change during the course of a year. Thus the
programming language choices reflect directly on the developers working but also on to
the hiring process. When programming language enjoys a well-established social and
technical infrastructure this is not a problem, since there will be lots of developers with
enough knowledge. Programming languages like Ruby and Python offer a large pool of
developers that can readily adopt into their JVM reincarnation.



www.manaraa.com

2. Polyglot programming 23

2.10 Poly-paradigm programming

Sebesta [95] classifies programming languages according to programming paradigms.
Different programming paradigms have distinct strengths and weaknesses, and domain
areas where the programming paradigm is best suited.

The imperative programming paradigm provides a good performance, because it offers
little abstraction. The lack of abstraction is also one of the limitations of the paradigm,
because without abstraction, the management and organization of a large software system
becomes hard. In imperative programming, the execution of the instructions is done in
order of appearance [61]. The imperative paradigm follows the fundamental computer
architecture of the von Neumann-Eckert model, meaning both data values and program
instructions are stored in memory, thus almost all programming languages possess imper-
ative properties.

The object-oriented programming paradigm focuses on object-oriented decomposition
instead of data abstraction and functional decomposition. Objects are represented using
a class concept, which encapsulates constants, variables and functions, also supporting
inheritance, visibility and information hiding [61]. The higher abstraction provides a more
natural organization of related aspects, which is especially beneficial in large software
systems, although at the cost of performance.

The functional programming paradigm adopts mathematical thinking, and shifts the
focus from how something should be computed to what should be computed [62]. Recent
interest in functional programming is caused by the emerge of multicore processors, thus
requirements for better concurrency. Functional programming does not involve any use
of variables as opposed to imperative programming. It considers everything as a func-
tion with an input and a result. Functions interact with each other through functional
composition, conditionals and recursion [61]. In addition to concurrency, other impor-
tant characteristics of functional programming include lazy evaluation and higher order
of functions. Lazy evaluation ensures that functions are called and values evaluated only
when necessary, therefore infinite expressions can be created and evaluated using only the
values needed. Higher order functions provide the basis of functional programming by
allowing functions to be passed on, in addition to values, to other functions [63]. The ma-
jor problem with functional programming is that it introduces a steep learning curve for
developers accustomed to object-oriented programming languages, because completely
different mindset is needed. Although many of the new versions of object-oriented pro-
gramming languages provide hybrid functionality by mixing object-oriented paradigm
with functional paradigm.

The concurrent, parallel, and reactive programming paradigms are increasingly im-
portant paradigms. Asynchronous message-passing can be used to implement elegant
communication in a client-server application or to parallelize computation. Functional



www.manaraa.com

2. Polyglot programming 24

nature of programming languages facilitate the writing of concurrent, parallel, and reac-
tive programs. [96; 97]

The logical programming paradigm adopts declarative thinking, and shifts the focus
from declaring how something should be accomplished to what should be accomplished.
Logical programming often gives a collection of assertions, or rules about the constraints
and outcomes, thus it is also called rule-based programming. Logical programming has
two distinct properties which are nondeterminism and backtracking. Nondeterminism al-
lows multiple solutions to a problem, and backtracking means that the decisions can be
reproduced and reasoned about [61]. The ability to specify what should happen enables
the machine to decide how to accomplish the task, and optimize the performance. The dis-
advantage of logical programming is that the paradigm is very specialized and somewhat
limited to the field of artificial intelligence and database information retrieval [61].

A programming language can be either statically or dynamically typed independently
of programming paradigm. Programming language that is statically typed has to declare
the types of all variables before compilation and the types cannot change, while dynami-
cally typed programming languages declare the types at runtime and the types can change.
An exception is typecasting, which is checked at runtime in many programming lan-
guages [61]. Statically typed programming languages usually provide better performance
because the compiler can make optimization based on the known type. Dynamically typed
programming languages are often interpreted, thus they allow new features to be tested
without laborious compilation. Because of the type of the variable is implicit in dynam-
ically typed programming languages, the implementations require less typing in contrast
to statically typed programming languages where the type of each variable must be spec-
ified. However, dynamically typed programming languages add these features at the cost
of type safety and performance.

Software development and domain engineering uses domain-specific languages (DSL),
which are a type of programming languages or specification languages which are dedi-
cated to particular problem domains, representation techniques, and solution techniques.
DSLs are in extensive use in web development and examples include CSS, regular expres-
sions and Ant [79]. DSLs are also essential in language oriented programming [19], and
apparent in the polyglot programming pyramid representation [13; 14; 15]. Since DSLs
are designed specifically for the problem domain, they increase productivity. However,
there is a huge extra effort needed when creating a new domain-specific language.

Scripting languages are programming languages that supports the writing of scripts.
A script is a program that automates the execution of tasks which could alternatively
be executed one at a time by human operator [98]. Scripting is used, for example, to
automate build and compilation process of software applications, web page interactions
within web browsers, and in several general-purpose and domain-specific programming
languages. Scripting languages offer ease of use through relatively simple syntax and



www.manaraa.com

2. Polyglot programming 25

semantics, and good operating system facilities with built-in interfaces. The source code
is interpreted to provide fast turnaround from script to execution [99]. In comparison, non-
scripting programming languages are usually compiled for superior performance. The
vast spectrum of scripting languages varies from general-purpose programming languages
to very compact and highly domain-specific languages.

2.11 Programming language features and tool support

Steele [49] proposes that all developers are divided into two categories known as lan-
guage mavens and tool mavens. A maven refers to a trusted expert in a particular field,
who seeks to pass knowledge on to others. Language mavens are enthusiastic about the
power and possibilities of higher-level programming, for example, first-class functions,
staged programming, aspect-oriented programming, reflection et cetera. Tool mavens
are vastly skilled with integrated development environment features like build and debug
tools, integrated documentation, code completion, refactoring and code comprehension.
Whereas language mavens tend to use more unsophisticated text editors which are more
likely to work with new programming languages and features. [49]

A new programming language typically lacks in support from integrated development
environments and is usable only with plain text editors. Whenever a programming lan-
guage or a new feature proves to be successful and establishes a solid ground, the tools
catch up. Steele [49] argues that programming language expertise and tool expertise are
alternatives to certain extent, since both tend to strengthen themselves to the exclusion of
the other.

Figure 2.9a shows the developer productivity from the language maven perspective.
The choice of a programming language can make a huge difference, because language
maven knows how to apply each programming language feature to a variety of situations.
The IDE on the other hand does not reflect that much on the productivity, since it is used
mainly as a plain text editor with few robust features like compilation support. [49]

Language

Editor

Language

IDED
ev

el
op

er
 p

ro
du

ct
iv

ity

(a) Language maven perspective.

Editor

Language

IDE

Language

D
ev

el
op

er
 p

ro
du

ct
iv

ity

(b) Tool maven perspective.

Figure 2.9: Different perspectives on developer productivity.

A tool maven has an inverse perspective on developer productivity shown in Fig-
ure 2.9b. A tool maven spends most of his time mastering the development tools and enjoy



www.manaraa.com

2. Polyglot programming 26

the occasional developer’s flow state of working with an integrated editor and debugger
with application scope refactoring and code comprehension capabilities at disposal. An
IDE provides a wide variety of advantages compared to a simple plain text editor. There-
fore, the choice of a programming language as long as it is supported by IDE matters less.
A tool maven is likely to work with the same classes and methods, statements and ex-
pressions where the real development power comes from the IDE and other development
tools. [49]

Developers have limited time especially for learning new skills. Any allocated time
can be used to master a programming language or to master the development tools. Both
of which accumulate knowledge. A language maven gathers knowledge of and how to
leverage from programming language features. A tool maven on the other hand famil-
iarizes with the development tools to take advantage on their powerful features. Both
of these have a positive feedback cycle, but Steele [49] argues that they are competing
cycles, and thus divided categories.

Developers willing to learn programming language features are more likely to appre-
ciate the features of new programming languages. These developers have the knowhow
to adopt a new programming language before the development tools support it, and may
do so, since their productivity does not rely on the tools. In addition, a language maven
sees these new features worth to adopt early, because using them is where the expertise
lies. [49]

In contrast, a developer who masters his development tools is likely to be unwilling to
try a new programming language, because he could lose a major part of his productivity
without the support of the development tools. In addition, a new programming language
provides far less advantage over another programming language for a tool maven, because
he does not have the knowhow of the features to enhance his productivity. [49]

Therefore, the more invested in learning programming language features, the bigger is
the benefit, although to the exclusion of tool features and vice versa. Relative merits of
programming language features and tool support divide the perspectives in two distinct
categories shown in Figure 2.10. [49]

Editor

Language

IDE

LanguageD
ev

el
op

er
 p

ro
du

ct
iv

ity

Figure 2.10: Relative merits of programming language features and tool support divide
the two categories.



www.manaraa.com

2. Polyglot programming 27

Fjeldberg [23] proposes that polyglot programmers are more likely to think of the
programming languages as tools over the IDEs. Therefore, polyglot programmers are
supposed to be language mavens.



www.manaraa.com

28

3. POLYGLOT PROGRAMMING ON THE JAVA

PLATFORM

The recent rise of non-Java programming languages on the Java Virtual Machine (JVM)
has led to a cross-fertilization between Java and other programming languages on the
JVM. The emergence of polyglot programming in projects involving programming lan-
guages such as Groovy, Scala and Clojure has been a major factor in the evolution of the
current Java platform [100; 101].

As mentioned previously, polyglot environment has two essential aspects, the platform
used for the integration and the different programming languages supported by the chosen
platform. The recent development on the Java platform is one of the reasons why polyglot
programming has the means for success.

Polyglot programming on the JVM is a relatively new concept. It is coined to describe
software systems and projects that utilize a non-Java programming language on the JVM
alongside a core of Java source code [87]. Although this is contradictory since polyglot
programming should not restrict to any specific programming languages. Therefore, poly-
glot programming on the JVM describes software systems and projects that utilize more
than one programming language on the Java Virtual Machine.

Java’s nature makes it a prominent choice for implementing functionality in the stable
layer. A mature general-purpose, statically typed and compiled programming language
provides many advantages. Conversely these same advantages tend to become a burden
in the upper layers. For instance recompilation is laborious, and deployment is a time
consuming heavyweight process. Static typing can lead to long refactoring times due
to its inflexibility and Java’s syntax is not naturally fit for producing domain-specific
languages.

The fact that the recompilation and rebuild time of a Java project quickly reaches the
90 seconds to 2 minutes mark will definitely break the developer’s flow [87; 102]. In
addition, it is a bad practice for developing code that may live only few weeks in the
production. A pragmatic solution is suggested to take advantage of Java’s rich applica-
tion programming interface (API) and library support to do the groundings in the stable
layer. Similarly if a particular feature such as a superior concurrency support is required
a pragmatic choice would be to choose another stable layer language with such vantage
like Scala. However, working stable layer code should not be discarded and rewritten in
a different stable layer programming language [84; 85].



www.manaraa.com

3. Polyglot programming on the Java platform 29

The distinction of duality between the programming language and the platform is a
critical concept to comprehend. It is essential to distinct what constitutes the program-
ming language and platform to understand how the polyglot programming on the Java
Virtual Machine can thrive. The Java programming language is a general-purpose, con-
current, strongly typed and class-based object-oriented language. The human-readable
Java source files are compiled by the javac Java compiler into bytecode class files which
are not human-readable. The Java platform, on the other hand, is the software that pro-
vides a runtime environment, the Java Virtual Machine to link and execute the bytecode
in the form of the class files.

3.1 Java platform

Java platform [103] is a software platform that provides a runtime environment, the Java
Virtual Machine to link and execute the Java bytecode in the form of the class files. In
technical terms of compiler theory the bytecode is a form of intermediate language rather
than a true machine code. This implies that the process of turning Java source code into
bytecode is really a class file generator. The actual compiler in the Java platform is the
just-in-time (JIT) compiler which performs runtime compilation of the class files as shown
in Figure 3.1. [87]

.java .class

Java Virtual Machine (JVM)

Transformed
.class

Executing
code

Machine
code

javac

Class loader

Interpreter JIT compiler

Figure 3.1: Java source code is transformed into class files, which are manipulated at
load time before just-in-time compilation.

The most important specifications that influence the Java platform are the Java lan-
guage specification (JLS) [104] and the Java Virtual Machine specification (VMSpec) [105].
Java 7 takes this distinction seriously by separating the VMSpec entirely from the JLS.
This indicates how seriously the support for non-Java programming languages is taken on
the JVM in Java 7.

Java Virtual Machine was originally built only for Java programming language but
nowadays it allows code to be cross-platform. The link between the programming lan-
guage and the platform is the shared format definition of the class files as shown in Fig-
ure 3.2. Java platform supports any other programming language as long as they are
targeted to run on the JVM, and that they obey the same rules and idioms.



www.manaraa.com

3. Polyglot programming on the Java platform 30

Java Groovy Scala ... Jython JRuby ...

Python Ruby

Java Library (API)

Class Files

Java Virtual Machine (JVM)

Native Method Invocation

Operating System

Class Loader Execution Engine ...

Figure 3.2: The Java platform and programming language interoperability.

Portability and the fact that JVM is available for almost any platform has led to its
widespread use. This has constituted the continuous evolutions and that libraries exist for
almost any task which has made JVM even more attractive and popular.

3.2 Evolution of polyglot programming

Java 6 release with JSR 223 [106] was a revolutionary step on the polyglot program-
ming frontier. The JSR 223 presented scripting for Java platform to address the needs of
Java community to take advantage of the benefits of the Java technology in a variety of
programming and scripting languages. The specifications described a mechanism which
allowed scripting language to be used in Java server-side applications and also allowed
scripting language programs to access information developed in the Java platform.

Java 7 introduces more evolutionary rather than revolutionary changes on the program-
ming language. The major difference between previous releases is that Java 7 is explicitly
released in preparation for the next version. The groundwork for major language changes
following in Java 8 is contained in Java 7 release. Java 7 is also the first Java version
developed in an open source manner. In addition, polyglot programming practically lives
in open source [107].

Java community driven OpenJDK [108] introduced the da Vinci Machine project [109]
as a multi-language renaissance for the Java Virtual Machine architecture (Figure 3.3).
The idea was to extend the JVM first-class architectural support for programming lan-
guages other than Java, especially dynamic languages. The graceful co-existence of the
new programming languages with Java on the JVM was pursued. The goal was to allow
other programming languages to take advantage of the powerful and mature Java tech-
nologies. This was later on adapted and coined as JSR 292 [110] to pursuit polyglot
programming.



www.manaraa.com

3. Polyglot programming on the Java platform 31

(a) The da Vinci Helicopter.

(b) The first JVM as da Vinci machine.

Figure 3.3: The da Vinci Machine project, a multi-language renaissance for the Java
Virtual Machine architecture [109].

The Java community had increasingly recognized the value of dynamically typed pro-
gramming languages, especially scripting languages. Java 7 with JSR 292 added sup-
port for dynamically typed programming languages on the Java platform making them
equal class citizens with Java. Programming languages such as Groovy, Scala, JavaScript,
Python, Ruby, Perl et cetera running directly on the JVM facilitated their interoperability
with the existing Java programming language. The key concept was to make the imple-
mentations of such programming languages more efficient and to make it easier to create
such implementations. The JSR 292 added a new bytecode called invokedynamic to sup-
port efficient and flexible execution of method invocations in the absence of static type
information. As of Java 7 all the programming languages on the JVM are now equal [111].

Some of the programming languages require interpreters to be written to be able to
evaluate code written in other programming languages from the Java. For example JRuby
is such an interpreter for Ruby and similarly Jython for Python. These interpreters enable
the usage of Java libraries from the respective programming languages and also utilize the
possibility to use best features of any supported programming language.

The postponed JSR 335 [112] in the upcoming Java 8 will introduce lambda expres-
sions also known as closures for the Java programming language. The JSR 335 will
enable the creation and consumption of easy-to-use, multicore-ready libraries to address
the challenge posed by multicore processors. Closures are welcomed addition to the Java
programming language since they remove much of the excess verbosity in Java source
code. The closures will also benefit poly-paradigm programming because they allow Java
programmers to deviate from the imperative object-oriented paradigm towards the func-
tional paradigm.



www.manaraa.com

3. Polyglot programming on the Java platform 32

3.3 Programming languages on the Java Virtual Machine

Java platform provides two possible ways of running different programming languages
on the Java Virtual Machine. Either the programming language has a compiler that emits
class files or that it has an interpreter which is implemented in Java bytecode. In any
case, it is common to have a runtime environment that provides a programming language
specific support for executing programs. The complexity of the runtime support for a
programming language varies depending on the amount of guidance required at runtime.
The implementation of the runtime environment support is a set of JAR files on the class-
path of the program that are bootstrapped before the program execution starts as shown in
Figure 3.4.

Java user code

CLASSPATH dependencies

JVM

(a) Runtime support of Java.

Lang x user code

Lang x libs

Lang x runtime

Java CLASSPATH libs

JVM

(b) Runtime support of non-Java
programming language.

Figure 3.4: Runtime support of programming languages on the JVM.

The need for a runtime environment support is required based on the fact that pro-
gramming languages tend to differ even in basic programming concepts. The runtime
environment is designed to help the type system and other aspects of a non-Java program-
ming language to achieve the desired semantics. For example Ruby differs from Java in
its object-oriented approach. In Ruby it is possible to have differently defined instances
of the same class. Individual object instances can have methods included at runtime that
were not known when the class was defined. This property called “open class” needs to
be replicated with advanced support from the JRuby runtime.

The JVM supports functional programming through first-class functions. The key con-
cept of functional programming can be stated as “functions are first-class values”. This
means that functions can be passed as variables into methods, and manipulated as if ordi-
nary values. On the other hand, the JVM handles classes as the smallest unit of code and
functionality. Therefore, a trick of creating an anonymous classes to hold the functions
is needed. Java does not offer any special syntax for it, although this might change with
Java 8 [87]. Programming languages like Groovy, Scala and Clojure all provide a spe-
cial syntax for writing out these “function literals” or “anonymous functions”, which is a
major pillar of the functional programming style.



www.manaraa.com

3. Polyglot programming on the Java platform 33

Multiple inheritance can not be expressed directly in Java or on the JVM. This can be
done only through interfaces that do not allow any method bodies to be specified. The
trait mechanism of Scala provides a different view of inheritance by allowing method
implementations to be mixed into a class definition. The JVM has no provision for it and
the behavior has to be synthesized by the Scala compiler and runtime.

3.3.1 Java

Java [113] is a general-purpose, statically typed, concurrent, class-based, object-oriented
programming language that is designed to have as few implementation dependencies as
possible. Java derives much of its syntax from C and C++ though the object-oriented
features are modeled after Smalltalk and Objective-C. Java follows the principle write
once, run anywhere (WORA), meaning that no recompilation is needed regardless of
platform changes.

Primary goals of Java are that programming language should be simple, object-oriented
and familiar. Secondly it should be robust and secure. In addition, it should be architecture-
neutral and provide high portability, and execute with high performance. The program-
ming language itself should be interpreted, threaded and dynamic. [114]

An example implementation of a standard deck of cards in Java is shown in the Pro-
gram 3.1. Java 7 improves type inference for generic instance creation [115]. It allows to
invoke the constructor of a generic class with an empty set of type parameters <> if the
compiler can infer the type arguments from the context. New “diamond syntax” is used
at line 15 to create an ArrayList<>() which compiler will infer as ArrayList<Card>().

1 List<String> ranks = Arrays.asList("Ace", "2", "3", "4", "5", "6", "7", "8", "9", "10",
2 "Jack", "Queen", "King");
3 List<String> suits = Arrays.asList("Clubs", "Diamonds", "Hearts", "Spades");
4

5 public class Card {
6 private String rank;
7 private String suit;
8 public Card(String rank, String suit) {
9 this.rank = rank;

10 this.suit = suit;
11 }
12 public String value() { return rank + " of " + suit; }
13 }
14

15 List<Card> deck = new ArrayList<>();
16 for (String rank : ranks) {
17 for (String suit : suits) {
18 deck.add(new Card(rank, suit));
19 }
20 }
21

22 for (Card card : deck) {
23 System.out.println(card.value());
24 }

Program 3.1: Making and printing a deck of cards with Java.



www.manaraa.com

3. Polyglot programming on the Java platform 34

Java offers a very simple memory model where all variables of object types are refer-
ences to the objects allocated on the heap. Java also eliminates certain low-level constructs
such as pointers. Therefore, providing a simple memory management which is handled
through integrated garbage collection performed automatically by the JVM.

The fact that Java is standardized has contributed to its success as a software system.
Due to standardization it has specifications that describe how it is supposed to work. In
practical terms it allows different project groups and companies to produce interoperable
and compatible implementations, although without any guarantees on the performance
of the different implementations on the same task. Specifications can be used to provide
assurances about the correctness of the implementation.

Java is used in a wide variety of computing platforms from mobile phones and em-
bedded devices, to enterprise servers and supercomputers. Today Java is one of the most
popular programming languages, with a reported 10 million users [116; 117]. Originally
Java was released in 1995 as a core component of Java platform.

3.3.2 Groovy

Groovy [118] is an agile, dynamic, compiled programming language for the Java Virtual
Machine with a Java like syntax with enhanced flexibility. It builds upon the strengths
of Java by enhancing it with powerful features inspired by programming languages like
Python, Ruby, Perl and Smalltalk. Groovy is widely adapted as a scripting and rapid
prototyping language, and it is often the first non-Java programming language that is in-
vestigated on the JVM due to almost-zero learning curve for Java developers. In addition,
it integrates seamlessly with all existing Java classes and libraries.

Groovy is a superset of Java leveraging the Java’s enterprise capabilities but also adding
productivity features like closures, builders and dynamic typing. Groovy also supports
building DSLs meaning that code becomes easy to read and maintain. It provides a native
support for XML as well as many existing modules for various types of tasks. It also
offers powerful processing primitives for shell and build scripting. Groovy is designed to
increase developer productivity by reducing scaffolding when developing. It also simpli-
fies testing by including supporting for unit testing and mocking.

An example implementation of a standard deck of cards in Groovy is shown in the
Program 3.2. Groovy introduces def which is a replacement for a type name. It is used to
indicate in variable definition that the type is irrelevant. Although in variable definition
it is mandatory to either provide a type name explicitly or replace it with def. A trivial
Groovy object contains only properties, and it can be created using the default construc-
tor or with named parameters. In addition, Groovy supports closures which are similar to
Java’s inner classes, except they are a single method which is invokable, with arbitrary pa-
rameters. Closures allow collections to be processed in a clean way, for example, looped
through with the each closure shown between lines 17 to 19.



www.manaraa.com

3. Polyglot programming on the Java platform 35

1 def ranks = [’Ace’ , 2, 3, 4, 5, 6, 7, 8, 9, 10, ’Jack’ , ’Queen’ , ’King’]
2 def suits = [’Clubs’ , ’Diamonds’ , ’Hearts’ , ’Spades’]
3

4 class Card {
5 def rank
6 def suit
7 String value() { println rank + ’ of ’ + suit }
8 }
9

10 List deck = new ArrayList()
11 for (rank in ranks) {
12 for (suit in suits) {
13 deck.add(new Card(rank: rank, suit: suit))
14 }
15 }
16

17 deck.each { card ->
18 card.value()
19 }

Program 3.2: Making and printing a deck of cards with Groovy.

Groovy 2.1 is the latest major and stable version. Current version adds support for
static type checking so that the compiler can report about the correctness of the source
code. Also a support for static compilation is provided to enhance the performance of
the critical parts in an application. Groovy 2.1 supports a special annotation to assist
documentation and type safety of domain-specific languages, thus providing beyond con-
ventional static type checking capabilities. It also introduces feature-oriented modularity,
and takes full advantage of the new Java 7 invokedynamic [110] support for dynamic
programming languages on the JVM.

The fact that alternative programming languages on the JVM can purely interoperate
with Java also implies that they can be deployed into a preexisting environment. Groovy
is placed on the dynamic layer since it is widely used as a scripting and rapid prototyping
language, and it is known for being great for building DSLs [87].

3.3.3 Scala

Scala [119] is a general-purpose, object-oriented programming language that also sup-
ports aspects of functional programming paradigm. It is designed to express common
programming patterns in a concise, elegant and type-safe way. Scala increases the devel-
opers productivity by smoothly integrating the features of object-oriented and functional
programming languages. Amount of lines of code is typically reduced by a factor of two
to three compared to an equivalent Java application.

Scala is a statically typed, compiled programming language like Java, but unlike Java
it performs a vast amount of type inference. Therefore, it can be described as a statically
typed dynamic programming language due to its dynamic language resembling syntax.
Scala provides an XML integration which makes it an interesting option also for web
environment.



www.manaraa.com

3. Polyglot programming on the Java platform 36

An example implementation of a standard deck of cards in Scala is shown in the Pro-
gram 3.3. Scala allows multiple ranges to be used in a single loop, in which case all the
possible computations of the given ranges are iterated as shown between lines 8 to 11.
In Scala the variables are created either with the val keyword or with the var keyword.
Variables instantiated with the val keyword are immutable read-only variables. Scala con-
structors differs from Java. In Scala the primary constructor is the class body followed
by its parameter list. In addition, Scala supports closures which are similar to Groovy.
Closures allow collections to be processed in a clean way, for example, looped through
with the foreach closure as show between lines 13 to 15.

1 val ranks = List("Ace", "2", "3", "4", "5", "6", "7", "8", "9", "10", "Jack", "Queen", "King")
2 val suits = List("Clubs", "Diamonds", "Hearts", "Spades")
3

4 class Card(val rank: String, val suit: String) {
5 def value() = println(rank + " of " + suit)
6 }
7

8 var deck = for {
9 rank <- ranks

10 suit <- suits
11 } yield new Card(rank, suit)
12

13 deck.foreach { card =>
14 card.value()
15 }

Program 3.3: Making and printing a deck of cards with Scala.

The language design of Scala has learned a great deal from Java as it overcomes several
long-term annoyances that Java developers have had to cope with. Scala is located on
the same stable layer with Java offering features like superior concurrency and powerful
testing support [87]. Some developers argue that Scala might one day challenge Java as
the “next big language” on the JVM.

3.3.4 Clojure

Clojure [120] is a dynamically typed, functional programming language from the Lisp
family from where it inherits many of its syntactic features. Clojure implements the code-
as-data philosophy and a powerful macro system. It is designed as a general-purpose
programming language to combine the approachability and interactive development of a
scripting language with an efficient and robust infrastructure for multithreaded program-
ming.

Clojure features a rich set of immutable, persistent data structures, and an explicit
progression of time constructs which are intended to facilitate the development of more
robust programs, especially multithreaded ones. The need for mutable data is provided
both through a software transactional memory system and a reactive Agent system that
together ensure clean and correct multithreaded design.



www.manaraa.com

3. Polyglot programming on the Java platform 37

An example implementation of a standard deck of cards in Clojure is shown in the
Program 3.4. The philosophy behind Clojure states that most parts of most programs
should be functional, based on the assumption that programs that are more functional are
more robust. Clojure uses immutable data structures to avoid mutating state. In case some
changes needs to be done with an immutable collection, a new collection based on the old
one is created with the additional changes. Keyword def is used to create and bind a data
to a Var. Vars provide a mechanism to refer to a mutable storage location that can be
dynamically rebound to a new storage location on per-thread basis.

1 (def ranks ["Ace" 2 3 4 5 6 7 8 9 10 "Jack" "Queen" "King"])
2 (def suits ["Clubs" "Diamonds" "Hearts" "Spades"])
3

4 (def deck (for [rank ranks suit suits] [rank suit]))
5

6 (doseq [card deck] (println (first card) "of" (second card)))

Program 3.4: Making and printing a deck of cards with Clojure.

Programming languages from the Lisp family are traditionally referred as expert-only.
Clojure differs by being somewhat easier, yet still providing developers its formidable
power. Clojure has been adopted well within test-driven development. Clojure’s advan-
tages and features are seen significant only for enthusiasts and specialized tasks like finan-
cial applications. It is likely to remain outside the mainstream of programming languages.
Clojure is located on the dynamic layer, but due to its concurrency support and other fea-
tures it can also be used as a fully fledged stable layer programming language [87].

3.4 Vert.x framework for the modern web and enterprise

Vert.x [121] is an asynchronous, multi-language, event-driven web application framework
build on top of the JVM. It provides a new approach to polyglot programming in web
application development. Vert.x offers an additional wrapper around its Java core foun-
dation, and also provides its own runtime environment. The core Java API is exposed
through the wrappers, thus making it feel like idiomatic framework for every program-
ming language it supports. Currently the API is exposed in Java, Groovy, CoffeeScript,
JavaScript via Rhino framework, Ruby via JRuby and Python via Jython, and with pro-
gramming languages like Scala and Clojure on the road-map.

Vert.x offers simplicity through convention over configuration by enabling to write
real, scalable applications in just a few lines of code without excess XML configuration
files. The core scalability is utilized efficiently using message passing and immutable
shared data. Also a simple concurrency model is offered to get rid of the superfluous has-
sle with the traditional multithreaded programming. Vert.x enables polyglot programming
so that application components can be written solely or as a combination of supported
programming languages in a single applications.



www.manaraa.com

3. Polyglot programming on the Java platform 38

Vert.x provides a different approach to the contemporary expectations of a web frame-
work. It faces the fact that an increasing amount of the web application logic is imple-
mented in JavaScript and run in the browser. Therefore, rendering the HTML pages and
processing form data is no longer the focus of the framework [122]. The server is to output
static HTML and JavaScript pages, and process connections to JavaScript clients through
WebSockets. Furthermore, Vert.x supports JavaScript communication library SockJS to
enable direct communication between the server and the JavaScript run in the browser.
Data is handled through a REST interface which utilizes the HTTP protocol functionality,
thus making the abstraction of HTTP less important for web frameworks.

3.4.1 Effortless asynchronous application development

Vert.x consists of Netty for much of its network input and output paired with Hazelcast
for group management of cluster members. Netty [123] is an asynchronous event-driven
network application framework which enables rapid development of maintainable high-
performance network applications such as protocol servers and clients. Hazelcast [124]
is an open source, peer-to-peer, in-memory data grid for Java.

Vert.x provides a succinct API which reduces the excess amount of an inordinate of
factories, providers, and thread pools that needs to be created with Netty just to do simple
things. Vert.x achieves a simple and clean single responsibility encapsulation by leverag-
ing Hazelcast to provide a high-performance network and in-memory event bus. [125]

Vert.x has an efficient concurrency model that works well, for example, with Scala
and Clojure, both of which are programming languages that were designed for multicore
processors. Development is greatly simplified since developers can write their implemen-
tation as single threaded. This is a relief with multithreaded programming in Java, Scala,
or even in Ruby, since developers do not have to synchronize the access to state. This
eliminates a whole class of race conditions and operating system thread deadlocks. It also
removes the need for synchronized methods, volatile variables and explicit locking.

Vert.x provides a high-performance API implementation for every programming lan-
guage it supports. This way Vert.x enables developers to write high-performance code on
the Java Virtual Machine without actually requiring much knowledge of the JVM or the
Java platform ecosystem at all. Since Vert.x is a framework library, any programming lan-
guage on the JVM can leverage from it. Therefore, the entire universe of JVM libraries,
concurrency APIs, and developments tools are available to developers. [125]

Vert.x provides an in-depth website and a set of documentations. Programming lan-
guage independent installation instructions and core concepts are covered in general. An
API reference manual goes into detail about each feature. There exists a version of the API
manual for each officially supported programming language. Also a generated HTML
documentation is provided for the related APIs. In addition, a manual to create Vert.x
modules and a guide to implement new programming language support is given.



www.manaraa.com

3. Polyglot programming on the Java platform 39

3.4.2 Verticle and Vert.x instances

Verticle is the unit of deployment in Vert.x, think of a particle for Vert.x. Verticles can be
written in any of the supported programming languages. A verticle is defined by having a
main or class in case of Java as shown in Program 3.5 which is actually a script to run to
start the verticle.

1 import org.vertx.java.core.Handler;
2 import org.vertx.java.core.http.HttpServerRequest;
3 import org.vertx.java.deploy.Verticle;
4

5 public class Server extends Verticle {
6 public void start() {
7 vertx.createHttpServer().requestHandler(new Handler<HttpServerRequest>() {
8 public void handle(HttpServerRequest req) {
9 String file = req.path.equals("/") ? "index.html" : req.path;

10 req.response.sendFile("webroot/" + file);
11 }
12 }).listen(8080);
13 }
14 }

Program 3.5: A simple Vert.x Java API implementation of a web server verticle, which
serves files from the webroot directory.

The Java API implementation is rather verbose. Consider a more compact example of
a simple Vert.x Groovy API implementation of a highly scalable web server, which serves
files from the webroot directory:

1 vertx.createHttpServer().requestHandler { req ->
2 def file = req.uri == ’/’ ? ’index.html’ : req.uri
3 req.response.sendFile ’webroot/$file’
4 }.listen(8080)

In addition, a verticle may contain other scripts which are referenced from the main,
and also any JAR files, and other resources that are used by the verticle. An application
may be a single verticle or it may consist of a set of verticles communicating with each
other through the event bus.

Verticles run inside a Vert.x instance and a single Vert.x instance runs inside its own
JVM instance. Many verticles can be run inside a single Vert.x instance. Vert.x isolates all
verticles by giving them their own classloader. This way separate verticles cannot interact
by sharing static members, global variables or by other means. A Vert.x instance of the
previously presented web server verticle can be run with:

1 vertx run Server.groovy

Multiple Vert.x instances can be run on the same host, or on different hosts on the
network at the same time. Separate instances can be configured to cluster with each
forming a distributed event bus over which verticles can communicate. Separate instances
for multiple cores on the server can be run with specifying the amount of instances:



www.manaraa.com

3. Polyglot programming on the Java platform 40

1 vertx run Server.groovy -instances 32

Vert.x ensures that all requests are distributed amongst the instances by implementing a
multi-reactor pattern, a reactor pattern with more than one event loop. The reactor design
pattern is an event handling pattern for handling service requests delivered concurrently to
a service handler by one or more inputs. Internally, a Vert.x instance manages a small set
of threads, one for every available core on the server. Basically each one of these threads
implements an event loop. When a Vert.x instance is run, meaning that a verticle instance
is deployed, the server selects an event loop which the verticle instance will be assigned
to. Any subsequent work for the particular verticle instance is guaranteed to be executed
by the same thread. Since potentially there are thousands of verticles running at any one
time, a single event loop is assigned to many verticles at the same time.

Vert.x allows to specify a particular verticle instance as a worker verticle. The differ-
ence is that the worker verticle is executed in a thread from an internal thread pool called
the background pool. Worker verticles are never executed concurrently by more than one
thread. Normally worker verticles communicate with other verticles through the event
bus, for example, receiving work to process. They are not allowed to use TCP or HTTP
clients or servers, and the amount of worker verticles should be kept to a minimum, since
the blocking approach does not scale when dealing with many concurrent connections.

3.4.3 Core services and modules

Vert.x core includes a set of services which can be directly called from code in a verticle.
The API for the core is provided in each of the supported programming languages. The
Vert.x core is considered fairly static and it is not intended to grow much over time.

Vert.x makes it easy to package applications or reusable resources as modules. These
modules can be written in any of the supported programming languages. Modules com-
municate by sending and receiving JSON messages over the event bus. This eliminates
the need to write API adaptor for each programming language.

Vert.x includes a module system and provides a public module repository. While the
Vert.x core is fairly static, the public module repository is intended to grow, and to offer
a wide range of modules. The repository already contains several modules including a
persistor, a mailer and work queues. As of Vert.x 2.0, modules can be placed into any
Maven repository or Bintray [126] and registered with the Vert.x module registry. This
creates an eco-system of Vert.x modules managed by the community. The community is
encouraged to create and contribute their own modules for others to use. [127]

As previously shown, setting up a web server with Vert.x takes just a few lines of code.
In addition, Vert.x ships with an out-of-the-box web server module. Consider example of
Vert.x Groovy API implementation which starts the web server module and also contains
the configuration:



www.manaraa.com

3. Polyglot programming on the Java platform 41

1 def webServerConf = [
2 port: 8080,
3 host: ’localhost’
4 ]
5 container.deployModule(’io.vertx~mod-web-server~2.0.0-final’ , webServerConf)

The call to deployModule instructs Vert.x to deploy an instance of the specified module
io.vertx˜mod-web-server˜2.0.0-final. Vert.x will download and install the module automati-
cally from the public module repository if the module is not already installed. In addition,
scaling up the web server is trivial. It is simply done by starting more instances of the
web server. This can be achieved by specifying the amount of instances to start in the call
to deployModule:

1 container.deployModule(’io.vertx~mod-web-server~2.0.0-final’ , webServerConf, 32)

Vert.x notices that multiple servers on the same host and port are being started. It
will internally maintain a single listening server and round-robin schedule all connections
between the various instances.

A Vert.x bus module busmod is a specific type of module that communicates with other
verticles only on the event bus by sending JSON messages as shown in Figure 3.5. Server
component is a module which works as a mediator allocating requests from the clients
to the respective verticles handling them. A verticle communicates on the event bus in
purpose of handling requests to other verticles and modules. Busmods are listening to the
event bus and will work accordingly based on the request.

Vert.x

busmod
verticle

server

event bus

client

JSON JSON

Figure 3.5: Propagating JSON messages between verticles and busmods on the event
bus.

An example busmod, such as a MongoDB persistor io.vertx˜mod-mongo-persistor˜2.0.0-

final can be instantiated out-of-the-box from the command line like any other verticle:



www.manaraa.com

3. Polyglot programming on the Java platform 42

1 def persistorConf = [
2 address: ’test.persistor’ ,
3 db_name: ’testdb’
4 ]
5 container.deployWorkerVerticle(’io.vertx~mod-mongo-persistor~2.0.0-final’, peristorConf)

Since it uses the event bus to communicate, the busmod is instantly usable by other
verticles irrespective of the programming language they are written in. In this particular
case the verticle is deployed as a worker verticle by invoking deployWorkerVerticle to en-
sure that it is never executed concurrently by more than one thread to ensure consistency
in the database.

3.4.4 Polyglot programming with Vert.x

Vert.x allows developers to write verticles in a choice of programming languages, cur-
rently supporting Java, Groovy, CoffeeScript, JavaScript, Ruby and Python, and aiming
to support Scala and Clojure. Deployed verticles can seamlessly interoperate with other
verticles irrespective of what programming language they are written in. A verticle or
multiple verticles that form an entire application or a reusable resource can be easily
packaged as a Vert.x module.

Vert.x builds on event-driven programming (EDP) model which is similar to approach
in frameworks such as Node.js [128]. In EDP the flow of the program is determined by
events, for example, messages from other programs or threads. Basic concept of Vert.x
involve setting event handlers. For example, to receive data from a TCP socket a handler
must be set, this handler is then called when the data arrives. Consider an example of a
simple TCP server that echoes everything it receives on the socket:

1 def server = vertx.createNetServer()
2 server.connectHandler { sock ->
3 sock.dataHandler { buffer -> sock << buffer }
4 }.listen(1234, ’localhost’)

Similarly, handlers are set to receive messages from the event bus, to receive HTTP
requests and responses, to be notified when a connection is closed, or to be notified when
a timer fires. All other operations that do not involve handlers are guaranteed never to
block, for example, writing data to a socket.Writing data to a socket can be done by
invoking the write method or using the left shift operator:

1 sock.write(’hello’)
2 sock << ’world’

In case Vert.x API allowed a blocking read on a TCP socket, and a verticle called
that blocking operation and no data would arrive in a period of time, the thread running
that blocking operation would be fully occupied. This means that the thread could not
work for any other verticle during that period of time. In such system, all verticles would



www.manaraa.com

3. Polyglot programming on the Java platform 43

need to be assigned their own thread. Consider what would happen with thousands, tens
of thousands, or hundreds of thousands of verticles running. It is clear that this kind of
blocking model would not scale because the overhead due to context switching and stack
space would be immense.

Verticles can communicate with other verticles using an event bus. Vert.x event bus
resembles the actor model popularized by the Erlang programming language, where ver-
ticles are the actual actors. In response to a message that a verticle receives, it can make a
local decision, create more verticles, send more messages, and determine how to respond
to the next message received. The system is able to scale well over available cores without
need for multithreaded execution of any verticle code. This is achieved by having mul-
tiple verticle instances in a Vert.x server instance and allowing message passing through
the event bus. The following snippet is an example where a handler registered to address
test.address echoes the body of the message it receives:

1 def eb = vertx.eventBus
2 eb.registerHandler(’test.address’) { message -> println message.body }

Event bus messaging supports two main styles of asynchronous messaging. Message
queue, also known as point-to-point messaging, is used when sending a message that
will result in at most only one handler registered at the address test.address receiving
the message. Publish subscribe messaging is also supported. Publishing assures that the
message will be delivered to any handlers registered against the given address test.address:

1 eb.send(’test.address’ , ’Sent message’)
2 eb.publish(’test.address’ , ’Published message’)

Although message passing is extremely useful, it is not always the best approach to
concurrency. An example would be an application providing an in-memory web cache.
When a resource request arrives, the server looks up the resource in the cache and returns
it if the data is present, otherwise loading it from disk and placing it in the cache for the
next time. Application should also scale across all available cores. Modeling this using
message passing proves problematic. Implementing a single verticle that manages the
cache would mean that all requests to the cache would be serialized through that single
threaded verticle instance. This could be improved by having multiple instances of the
verticle managing separate parts of the cache, although implementing this would quickly
get ugly and complicated.

As a solution, Vert.x provides a shared map structure that can be accessed directly by
separate verticle instances in the same Vert.x instance. The shared map and shared set
facility allow only immutable data to be shared between verticles:

1 def map = vertx.sharedData.getMap(’test.sharedmap’)
2 map[’some-key’] = 123
3 def set = vertx.sharedData.getSet(’test.sharedset’)
4 set << ’some-value’



www.manaraa.com

3. Polyglot programming on the Java platform 44

With a single line of code, the requested data from the server can be looked up in the
cache and returned to the user. It is good to remember that shared data is only dangerous
if the data shared is mutable.

The polyglot programming approach of Vert.x has its concerns. The foremost con-
cern is that taking programming languages like Ruby, Python or JavaScript from their
normal environments can be confusing for developers, as the developers need to internal-
ize alternative configurations for systems and installing packages. In addition, sufficient
knowledge of Java is required to take an advantage of the JVM libraries when native
wrappers for alternative programming languages do not exist. This reason alone indicates
the future success of native JVM programming languages like Clojure, Groovy and Scala
with the Vert.x framework. [125]

3.4.5 Support for new programming languages

The Vert.x core distribution is implemented in Java. Support for alternative programming
languages is provided in the form of modules. Vert.x 2.0 made it possible for the commu-
nity to implement support for new programming languages, or alternative programming
language engines for already supported programming languages. New programming lan-
guage implementations are pushed to any Maven repository or to Bintray and registered
with the Vert.x module registry.

A general rule is to encapsulate the Vert.x Java API inside idioms common in the pro-
gramming language in question. For example, the Java API uses an interface to represent
an event handler, whereas Groovy API uses a closure, and Ruby API uses a block. For
this reason, the programming language module needs to implement an API wrapper which
converts the raw Java API to a form that follows the conventions and best practices of the
programming language in question.

Programming language implementations are marked as ’resident’: true in the module
configuration file mod.json to annotate that the module will not get unloaded until the
JVM exits. In addition, the modules are marked as ’system’: true which means that they
will be installed into the sys-mod directory of the Vert.x installation so that they will not
be downloaded for every application that requires them.



www.manaraa.com

45

4. IMPLEMENTATION

This chapter describes four polyglot programming project implementations of a simple
web application that were produced as a part of this thesis to experiment with polyglot
programming in a real-world situation. The project was implemented in both Java and
Groovy as a server-side application, and also with the Vert.x and AngularJS frameworks
as a JavaScript client-side application to allow direct comparison of several polyglot sys-
tems. Also an additional Groovy project with Java domain model was made to explore
interoperability and usage of legacy code. In addition, observations on Groovy as the pro-
gramming language of choice, and in web development comparing traditional methods
with client-side architecture are presented.

Example application consist of a small domain model with only simple business logic
to add, remove and list departments and employees. These project implementations serve
as proof of concept to demonstrate the feasibility behind polyglot programming and poly-
glot programming pyramid. Simplicity of the application limits its ability to demonstrate
some cases where different programming languages and paradigms might prove useful.
However, proof of concept design is given to verify that the concept has the potential of
being used. All of the project implementations are fundamentally identical.

4.1 Project structure

Java and Groovy are both widely used programming languages on the Java platform. In
addition, interoperability of programming languages provided by Java Virtual Machine
can be leveraged to reduce risks and benefit from legacy code in some parts of the project.
The Vert.x project provides a different approach with its JavaScript client-side applica-
tion. A simple web application is often split into four layers: domain model, data access,
business logic and web layer for binding other layers to the web environment.

Java project uses Maven [129] for managing the project and its dependencies. Groovy
projects benefit from the convention over configuration provided by the Grails framework
by using the built-in Grails dependency resolution DSL. Vert.x project is also managed
with Maven, and its own module repository is used to fetch required modules.

All of the example projects utilize jQuery [130] JavaScript library to simplify the
client-side scripting of HTML and to produce more dynamic web content. Another com-
mon element is the sleek and intuitive Twitter Bootsrap [131] front-end framework that is
used to ease and speed up the content presentation and web development in general.



www.manaraa.com

4. Implementation 46

4.1.1 Web project with Java using Spring Framework and
Hibernate

Structure of the project shown in Figure 4.1a follows the four layer architecture of a simple
web application. Domain model represent the real-world problem, repository provides the
data access abstraction and service implements the business logic, whereas web module
binds the whole application to the web environment.

Java

web

.service

service    service   

FormObjects

.repository

.model

model   

repository   

(a) Project structure

JSP Hibernate Twitter
Bootstrap

Spring 
Framework

jQuery

Java

(b) Polyglot programming pyramid

Figure 4.1: Project structure and polyglot programming pyramid of the Java project.

Java provides the basis for the polyglot system in this project. It is located in the
stable layer of the polyglot programming pyramid shown in Figure 4.1b. Spring Frame-
work [132] contributes to the dynamic layer by providing an efficient and versatile web
application development framework for Java. Spring is an essential part of the web appli-
cation implementation and its technologies contribute to all layers.

Domain layer contains different technologies targeting certain and concrete problem
domains. Technologies located in the domain layer are usually utilized inside the other
two layers to provide problem domain specific solutions. Hibernate [133] annotations are
used to create the object-relational mapping and validation of the domain model objects
which is used in conjunction with Spring JPA Repository to provide the data access.

The web module contains web application specific components implemented on top
of the Spring Framework and also the HTML view layer implemented with JSP. Twitter
Bootstrap is used to enhance the content presentation and jQuery is utilized to provide
dynamic features on the client-side.



www.manaraa.com

4. Implementation 47

4.1.2 Web project with Groovy using Grails framework

The project structure of the Groovy project shown in the Figure 4.2a follows the principles
of the four layer architecture of a simple web application, although the repository layer
is omitted because data access is encapsulated in the domain model objects. Domain
model represent the real-world problem, service provides implements the business logic
and uses the domain model data access abstraction, whereas web module binds the whole
application to the web environment.

Groovy

web

.service

service   

FormObjects

.model

model   

(a) Project structure

GSP GORM Twitter
Bootstrap

Grails jQuery

Groovy

(b) Polyglot programming pyramid

Figure 4.2: Project structure and polyglot programming pyramid of the Groovy project.

Figure 4.2b represents the polyglot programming pyramid for the project. Groovy is
the programming language of choice in this project and is located in the stable layer.
Grails [134] is a project to extend Groovy to web application development. It provides
a fully fledged agile web development environment built upon existing technologies like
Spring Framework and Hibernate leveraging the features of Groovy. Having principles
like convention over configuration, Grails strives for quick and simple development with
less configuration providing many common features out of the box. Grails is an essential
part of a web application contributing to all layers, although foremost to the dynamic layer
by providing a very versatile web application development framework.

The domain layer contains different technologies targeting certain and concrete prob-
lem domains. Technologies located in the domain layer are usually utilized inside the
other two layers to provide problem domain specific solutions. Grails provides its own
object-relational mapping build on top of Hibernate to implement data access on domain
classes.

The web module contains web application specific components implemented on top of
the Grails framework and also the HTML view layer implemented with GSP. Similarly to
the Java project, Twitter Bootstrap is used to enhance the content presentation and jQuery
is utilized to provide dynamic features on the client-side.



www.manaraa.com

4. Implementation 48

4.1.3 Web project with Groovy using Grails framework and
Java legacy domain model

The project structure of the Groovy project with a Java legacy domain model is shown
in the Figure 4.3a. Figure 4.3b represents the polyglot programming pyramid for the
project. This project was made to study programming language interoperability and as a
proof of concept on how to utilize Java implementation of the domain model in a Grails
web application. The project is otherwise identical with the previously described Groovy
project.

Groovy

web

.service

service   

FormObjects

Java

.model

constraints     model   

(a) Project structure

GSP GORM Twitter
Bootstrap

Grails jQuery

GroovyJava

Hibernate

(b) Polyglot programming pyramid

Figure 4.3: Project structure and polyglot programming pyramid of the Groovy project
with Java legacy domain.

The difference is that this project uses the Hibernate and JPA annotated Java legacy
domain model implementation from the previous Java project in conjunction with the
Groovy project. How this is achieved is covered subsequently.

4.1.4 Single-page application with Vert.x framework and An-
gularJS

A single-page application (SPA) is a web application within a single web page with a goal
of providing more fluid user experience similar to a desktop application. Only a single
page load is required to retrieve all necessary HTML, JavaScript and CSS. Additional
resources are dynamically loaded and added to the page on request, generally in response
to user interactions. A single-page application does not load at any point in the process,
neither the control transfers to another page. Modern web technologies – in this case
Twitter Bootstrap and jQuery – are used to provide the perception and navigability of
separate logical pages in the application.



www.manaraa.com

4. Implementation 49

The project structure of the client-side project shown in the Figure 4.4a follow the prin-
ciples of a thin server architecture to implement a single-page application. Figure 4.4b
represents the polyglot programming pyramid for the project.

Groovy

mod-web-server

EventBus    
mod-mongo-persistor

JavaScript

web

service    

SockJS    

EventBus    

webServerConf

(a) Project structure

HTML NoSQL Twitter
Bootstrap

AngularJS jQuery

Vert.x

(b) Polyglot programming pyramid

Figure 4.4: Project structure and polyglot programming pyramid of the Vert.x project.

Groovy is used as the programming language of choice on the server-side and JavaScript
on the client-side. Both of them utilize the native Vert.x API implementations. An out-
of-the-box MongoDB persistor bus module is used as a NoSQL document database that
provides the necessary data access over the event bus.

The implemented SPA uses dynamic communication to interact with the web server
behind the scenes. The Vert.x event bus is utilized in conjunction with SockJS [135] to
bridge the client-side with the server-side application. The server-side application deploys
the web server, enables the SockJS bridge, and also deploys the MongoDB persistor bus
module which instantly registers on the event bus.

Requests to the server over the event bus result in raw data in JSON representation be-
ing returned. A client-side AngularJS [136] JavaScript implementation uses the returned
JSON to update the partial area of the Document Object Model (DOM). AngularJS is
web framework used at the client-side to implement the web application and to provide
declarative templates with data-binding.

The web module contains web application specific components implemented on top
the AngularJS framework and also the pure HTML view layer enhanced with AngularJS
directives. Twitter Bootstrap is used to enhance the content presentation and jQuery is
utilized to provide dynamic features on the client-side.



www.manaraa.com

4. Implementation 50

4.2 Web flow execution, decorators and mapping

An execution flow of a web application in Java and Groovy projects are identical, since
the Grails framework builds on top of the Spring Framework. The execution flow of an
application shown in Figure 4.5 corresponds roughly to a basic web application. An in-
coming HTTP request traverse through some servlet filters and the decorator filter after
which it is passed to Spring Framework. Spring maps the incoming request to a controller
binding and validates request parameters when appropriate. The controller uses service
methods to interact with a database, after which the control is returned back to the con-
troller which prepares and returns an appropriate view to Spring. Spring then renders the
view producing the resulting HTML page that is returned through the decorator to the
client.

Browser TemplateFilter
or SiteMesh Spring View Controller Service

request

return the 
HTML document

include head &
page headers

execute
servlet

return the 
generated HTML

request 
mapping

business
logicinstantiate &

initialize

return the
view objectdraw

the view

include footer

Figure 4.5: Execution flow of the web application.

Decorators are used to wrap additional data around a regular view. Decorators allow
references to common elements to be omitted from the code of the actual pages. A com-
mon use case is to include a header, a footer and a menu to every page of an application.
Both Java and Groovy projects use SiteMesh [137] decoration framework. The Vert.x
project implements a single-page application, and thus there is no need for a separate
decorator to include common elements to several pages – there is only a single page.

The execution flow of the single-page application in the Vert.x project is rather different
because of the thin server architecture and the client-side single-page application approach
that uses JavaScript AngularJS web framework. The server-side only serves an HTML
file and deploys a MongoDB persistor on the Vert.x event bus to provide necessary data
access for the client-side application.



www.manaraa.com

4. Implementation 51

Startup of an AngularJS web application is shown in the Figure 4.6a. The browser
loads the HTML file from the server and parses it into the DOM, after which it loads
the angular.js script file. AngularJS waits for DOMContentLoaded event before it starts.
AngularJS searches for the application boundary designated by ng-app directive. The
ng-app directive can be used to specify a module containing declarative specifications
on how the application is bootstrapped. The module specified in the ng-app directive is
used to configure the $injector, which creates the $compile service and the $rootScope.
The $compile service compiles the DOM and links it with the $rootScope. All AngularJS
directives are matched against the HTML and executed during the DOM compilation.
This way directives can register behavior or transform the DOM.

Browser AngularJS

Static 
DOM

HTML

Dynamic 
DOM 
(view)

ng-app="module"

$injector

$compile $rootScope

$compile 
(dom) 

($rootScope)

DOM 
Content 
Loaded 
Event

(a) Startup of an AngularJS web appli-
cation.

Native JavaScript

AngularJSEvent Queue 
(wait)

DOM Render

$apply(fn) fn()

$watch
list

Event 
Loop $digest

loop

$evalAsync
queue

(b) Runtime execution of an AngularJS
web application.

Figure 4.6: Startup and runtime execution of the AngularJS web application.

Runtime execution of an AngularJS web application is shown in the Figure 4.6b. The
event loop in the browser waits for an event to arrive. Example events include user in-
teractions, timer or network events such as a response from the server. Execution of the
event’s callback function enters the JavaScript context, where the DOM structure can be
modified. The browser leaves the JavaScript context after the callback is executed, and
the view is rendered based on DOM changes.

AngularJS interacts with the event loop in the browser by modifying the normal JavaScript
flow. AngularJS splits the JavaScript execution context into classical and AngularJS con-
text by providing its own event processing loop. Operations applied in AngularJS ex-
ecution context will benefit, for example, from data-binding, exception handling, and
property watching. The $apply() can be used to enter the AngularJS execution context
from JavaScript. Controllers, services and other methods call the $apply() automatically
by the directive handling the event. An explicit call to $apply() is only needed when im-
plementing custom event callbacks, or when working with third-party library callbacks.

A function is run in the AngularJS execution context by calling scope.$apply(stimulusFn)

on the work to be processed. AngularJS executes the stimulusFn(), which typically alters



www.manaraa.com

4. Implementation 52

the application state. AngularJS then enters the $digest loop and iterates until it stabilizes,
which means that the $evalAsync queue is empty and the $watch list does not detect any
changes. The $evalAsync queue schedules all of the work that needs to occur outside of
the current stack frame, but before the browser renders the view. The $watch list contains
a set of expressions that may have changed since last iteration, and if any detected the
$watch function is called typically updating the DOM with a new value. Execution leaves
the AngularJS and JavaScript context once the $digest loop has finished. Browser then
re-renders the DOM to reflect any changes.

Spring framework supports multiple ways for request mapping including a Java an-
notation based used in the Java project and an XML based mapping. Grails framework
extends the underlaying Spring by introducing some Django like features. Django is a
web framework written in Python. Grails provides request mapping based on regular ex-
pressions and by capturing groups as arguments for the target method. The mappings are
reverse matched so that URLs can be inserted to a page by simply referring a mapping by
specifying controller name and action. This way URL handling and refactoring is consid-
erably improved. Program 4.1 shows a Grails configuration file UrlMappings.groovy which
contains the URL request mappings specified in the Groovy projects.

1 class UrlMappings {
2 static mappings = {
3 "/departments"(controller: "department", action: "departments",
4 view: "department/departments")
5 "/departments/add"(controller: "department", action: "add", view: "department/departments")
6 "/departments/delete/$departmentId?"(controller: "department", action: "delete",
7 view: "department/departments")
8

9 "/employees"(controller: "employee", action: "employees", view: "employee/employees")
10 "/employees/add"(controller: "employee", action: "add", view: "employee/employees")
11 "/employees/delete/$employeeId?"(controller: "employee", action: "delete",
12 view: "employee/employees")
13 "/employees/change/$employeeId?/$departmentId?"(controller: "employee",
14 action: "changeDepartment", view: "employee/employees")
15

16 "/api/employees/"(controller: "employee", action: "listEmployeesJson")
17 "/api/departments/"(controller: "department", action: "listDepartmentsJson")
18 "/api/municipalities/"(controller: "municipality", action: "listMunicipalitiesJson")
19 "/api/municipalities/$term?"(controller: "municipality", action: "checkMunicipalitiesJson")
20

21 "/"(controller: "overview", action: "overview", view:"overview")
22 "500"(view:’/error’)
23 }
24 }

Program 4.1: Grails URL request mapping.

Single-page application approach of the Vert.x project omits the need for URL request
mapping. Twitter Bootstrap and jQuery are used to provide similar perception and naviga-
bility of separate logical pages. AngularJS controllers use services as directives which can
be utilized directly from the HTML. The Vert.x event bus is configured on the server-side
to allow interaction with the MongoDB persistor from the AngularJS services.



www.manaraa.com

4. Implementation 53

4.3 Form objects, binding and validation

Most web applications modify stored data. HTML forms are used to achieve this, how-
ever forms themselves provide no binding or validation logic. Web frameworks provide
ready-made components to simplify the process of reading the data from the request pa-
rameters, and to perform form validation and binding of the data into specified program
components, for example, to JavaBeans.

Spring allows any object to be used as a form object responsible for handling the
data in the forms. A form object is a representation of an existing domain model object
containing only the needed properties. In general, a domain model object should not be
used directly as a form object, since the form data rarely corresponds one-to-one with the
domain model properties. Form objects usually follow the principles of Data Transfer
Objects (DTO) which are Plain Old Java Objects (POJO) that are used to contain only
the needed properties for the form in question. DTOs require manual initialization from
the corresponding model properties. After binding the request parameters the properties
are manually validated and finally the values are manually copied to the corresponding
domain model objects.

A disadvantage of this approach is the missing relation between the properties in the
form object and in the corresponding domain model object. Often the properties are con-
gruent even though the whole classes are not. The missing relation of the properties render
any information provided in the model object for its properties unavailable to validation,
thus no automatic binding in either direction is possible. But then again, this approach
entail simplicity and clear separation of concerns as an advantage.

The relation between the properties in the domain model and in the form object can
be achieved by encapsulating the required information in a separate object which is then
used to replace the related properties in the form object. Thus the type information and
annotations in the model object becomes available to the framework to perform automatic
validation. This also enables the generation of rules for the client-side validation. A
more common approach is simply to duplicate the necessary properties and annotations
specified in the domain model object into the form object.

Groovy and its high-productivity web framework Grails makes the relation between
domain models and form objects more easier to maintain by enhancing the underlaying
Spring Framework Validator API and data binding. Grails provides an unified way to
declaratively specify validation rules known as constraints. A common way is to create
constraints for properties in domain classes and then import the required ones into corre-
sponding form objects as shown at line 11 of Program 4.2. All constraints that map with
the specified properties in both classes will be imported, if not stated otherwise. Also
additional constraints can be specified for required fields as shown at line 12.



www.manaraa.com

4. Implementation 54

1 package info.harmia.polyglot.grails.service
2 /* imports */
3

4 @Validateable
5 class EmployeeForm {
6 String name
7 String email
8 Long departmentId
9

10 static constraints = {
11 importFrom Employee
12 departmentId nullable: false
13 }

Program 4.2: Validation constraints can be specified or imported from the model object.

AngularJS client-side applications provide a different role for the forms. JavaScript
logic is triggered to handle the form submission in application specific way, in contrast to
classical round-trip applications that translate the form submission into a full page reload
that sends the data to the server.

AngularJS prevents the default action of form submission to the server unless an ac-

tion attribute is specified in the form directive element. AngularJS applications use form
submission to trigger a JavaScript method specified via ng-submit directive on the form
element or via ng-click directive on the first button or via input directive by specifying field
of type submit input[type=submit].

AngularJS uses the form and form controls to provide client-side validation services.
Client-side validation provides better user experience, because of the instant feedback and
instructions on how to correct pending errors. Server-side validation is still necessary for
a secure application, since client-side validation can easily be circumvented and thus can
not be solely trusted.

AngularJS provides two-way data-binding with an ng-model directive which is respon-
sible for synchronizing the model to the view, as well as the view to the model. The
ng-model directive provides an API for other directives to augment its behavior.

4.4 Model, Repositories and Services

A model is used to describe a real-world problem domain that shapes and forms the basis
of an application. Services are used to implement the business rules, thus considered to
be the most important components. Repositories wrap a facade, an additional layer of
abstraction over the data access objects (DAO) that are used to abstract out the actual
implementation of data acquisition and persistence.

The difference between repository and DAO is that the repository deals with domain
objects and DAOs return data as in object state. In fact, repositories use DAOs to retrieve
the data from the storage and use them to restore the domain object, or to extract the data
from the domain object to be persisted.



www.manaraa.com

4. Implementation 55

Web applications often implement a programmatically simple domain model, services,
and data access that together form the basis of the web application, although not web-
related in any way. Due to programmatic simplicity the gain from advanced programming
languages in domain modeling is vapid.

4.4.1 Model

Program 4.3 shows a Java implementation of a simple domain model object representing
an employee. The example model uses Java Persistence API (JPA) [138] annotations to
utilize a POJO persistence model for object-relational mapping and Hibernate Validator
annotations for strengthened typing.

1 package info.harmia.polyglot.springapp.mvc.core.model;
2 /* imports */
3

4 @Entity
5 public class Employee {
6 @Id
7 @GeneratedValue(strategy = GenerationType.AUTO)
8 private Long id;
9

10 @Basic
11 @NotBlank
12 private String name;
13

14 @Basic
15 @Email
16 @NotBlank
17 private String email;
18

19 @ManyToOne(fetch = FetchType.EAGER)
20 @NotNull
21 private Department department;
22

23 /* basic bean getters and setters for all properties */

Program 4.3: Java implementation of an employee model.

Line 21 specifies a department as a reference to another domain model object. The
type information including validator annotations can be used to deduce that department,
name and email properties are required fields that may never be null or more so blank. In
addition, the value of the email field has to match the @Email annotation pattern validation.

Java provides a rather clean domain model class implementation except for the required
property getters and setters. Although they are easily generated. Optional fields in model
objects may prove to be problematic upon use, since Java has no built-in mechanism to
describe fields with possible null value. Thus users are expected to know and check for
possible null value before dereferencing objects:

1 String departmentName = null;
2 if(employee.getDepartment() != null) {
3 departmentName = employee.getDepartment().getName();
4 }



www.manaraa.com

4. Implementation 56

The Java syntax is quite cumbersome. Java 7 was proposed to implement a safe-
dereference operator with the following syntax:

1 departmentName = employee.getDepartment()?.getName();

The proposal was not included in Java 7 and has been discontinued since it does not
remove the problem, although it would simplify the syntax. Groovy provides this kind of
safe-dereference syntax to reduce some of the Java verbosity:

1 departmentName = employee?.department?.name

Upcoming Java 8 introduces a container object Optional<T> which may or may not
contain a non-null value. An optional field will return true if a value is present, isPresent().
The value can be returned with a get() method. Following example fetches an optional
department of an employee:

1 Optional<Department> found = employee.getDepartment();
2 if(found.isPresent()) {
3 Department department = found.get();
4 String departmentName = department.getName();
5 }

The adoption of this functional idiom is to render implementations less vulnerable to
null dereferencing problems and as a result more robust and less error-prone. Beside the
increase in readability, it forces developers to actively think about the absent case, since
the optional property has to be unwrapped before usage.

Program 4.4 shows a similar domain model object implementation in Groovy. Grails
framework omits the Java annotations and provides the enhanced constraints mechanism.
Constraints are defined in a constraints property that is assigned a code block.

1 package info.harmia.polyglot.grails.model
2 /* imports */
3

4 @Validateable
5 class Employee {
6 String name
7 String email
8

9 static belongsTo = [
10 department: Department,
11 ]
12

13 static mapping = {
14 department lazy: false
15 }
16

17 static constraints = {
18 name blank: false, minSize: 1, maxSize: 255
19 email blank: false, minSize: 1, maxSize: 255, email: true
20 }

Program 4.4: Groovy implementation of an employee model.



www.manaraa.com

4. Implementation 57

Line 10 specifies a reference to another domain model object department. Constraints
declare that the name and email properties cannot be blank and must be between 1 and
255 characters long, and that the email property is validated against an email pattern. By
default, all domain class properties have an implicit nullable: false constraint, which means
that properties cannot be null unless specified otherwise.

Groovy provides a clean and robust domain model object that reduces much of the
Java boilerplate. A property name declared without an access modifier generates a private
field with a public getter and setter methods. Java persistence and validation annotations
are replaced with Grails enhanced mapping and constraints mechanisms. In addition,
Groovy’s enhanced syntax allows constructors to be invoked with lists and maps to create
objects, in addition to a classic Java way:

1 def employee = new Employee(params)
2 def employee = new Employee(name: params.name, email: params.email, department: params.department)

Groovy and Grails makes it also possible to reuse JPA and Hibernate Java legacy do-
main models. The existing domain model implemented in Java can be packaged in a JAR
and included in the application or by simply copying the source files into the src/java

directory and used from there. A mapping entry is needed for every JPA annotated do-
main model class in the /grails-app/conf/hibernate/hibernate.cfg.xml file as shown in Pro-
gram 4.5.

1 <?xml version=’1.0’ encoding=’UTF-8’?>
2 <!DOCTYPE hibernate-configuration PUBLIC
3 ’-//Hibernate/Hibernate Configuration DTD 3.0//EN’
4 ’http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd’>
5

6 <hibernate-configuration>
7 <session-factory>
8 <mapping package="info.harmia.polyglot.springapp.mvc.core.model"/>
9 <mapping class="info.harmia.polyglot.springapp.mvc.core.model.Department"/>

10 <mapping class="info.harmia.polyglot.springapp.mvc.core.model.Employee"/>
11 <mapping class="info.harmia.polyglot.springapp.mvc.core.model.Municipality"/>
12 </session-factory>
13 </hibernate-configuration>

Program 4.5: Hibernate configuration file mapping the Java domain model objects.

Grails introduces GORM which is Grails’ object-relational mapping (ORM) imple-
mentation built on top of Hibernate 3 open source ORM solution. GORM uses the dy-
namic nature of Groovy with its static and dynamic typing, along with Grails convention
over configuration principle to reduce excess the amount of configuration involved in do-
main class creation.

GORM validation can be used with a JPA annotated Java domain model by specify-
ing constraints. The constraint metadata can be attached to a class by adding a pack-

age.DomainClassConstraints.groovy script file to src/java. Constraints block needs to be
defined in the same package as the Java class file:



www.manaraa.com

4. Implementation 58

1 package info.harmia.polyglot.springapp.mvc.core.model
2

3 constraints = {
4 name blank: false, minSize: 1, maxSize: 255
5 email blank: false, minSize: 1, maxSize: 255, email: true
6 }

As described, it is rather easy to incorporate a Java domain model in a Grails web appli-
cation, although some of the elegance and custom mappings of standard GORM domain
classes are lost. However, even with Java domain model classes, GORM is still able to
provide dynamic finders, criteria queries, validation and scaffolding. Dynamic scaffold-
ing enables auto-generation of a complete application for a given domain class including
necessary views and controller actions for create, read, update and delete (CRUD) opera-
tions.

The single-page application project with Vert.x framework has a different approach to
domain model objects due to AngularJS and MongoDB. In contrast to Spring, Grails and
many other frameworks, AngularJS sets no restrictions or requirements on the domain
model object. There is no required inheritance from base classes or any special accessor
methods to implement for accessing or modifying the model state. AngularJS accepts any
plain JavaScript object as a model, and thus the model can be a primitive, an object hash
or a full object type.

AngularJS application uses a model to represent the data which is rendered into a view.
Merging the model with a template to produce the view requires only that the model can
be referenced from the scope.

4.4.2 Repositories

Lean programming practices are used to eliminate some waste effort and boilerplate code
in proof of concept development by favoring “pull” design over “push” design. There-
fore, infrastructure concerns like persistence is built only to satisfy the needs of business
requirements instead of building a data access layer thought to be needed later on by the
application. Repository pattern is used to mediate between the domain model and data
mapping layers using a collection-like interface for accessing domain objects. It practi-
cally lays a facade over the persistence system and shields the rest of the application code
from having to know how the persistence works.

Spring Data provides a repository abstraction to significantly reduce the effort to im-
plement data access layers for various persistence stores. Spring provides JpaRepository

interface that can be extended to create a domain model repository providing automati-
cally generated CRUD operations for the domain model object:

1 public interface EmployeeRepository extends JpaRepository<Employee, Long> {
2 }



www.manaraa.com

4. Implementation 59

The JpaRepository extends a CrudRepository which in turn extends a basic Repository.
Utilizing repositories does not restrict to simple CRUD operations. Custom implementa-
tions and queries can still be created using the standard JPA queries and with the Hibernate
Criteria API.

Grails’ object-relational mapping also generates automatically the CRUD operations
for domain model objects. GORM also supports number of powerful ways to query.
Dynamic finders, where queries, criteria queries and Hibernate’s object-oriented query
language (HQL) can be used.

Vert.x project uses a MongoDB [139] data storage which provides a completely differ-
ent approach other than the object-relational mapping. MongoDB is a document-oriented
database designed to facilitate development and scalability. MongoDB provides a flexible
schema for data. Data is stored as collections which do not enforce document structure.
Therefore, documents in the same collection are not enforced to have the same structure or
set of fields, and that common fields might hold different types of data. Although in prac-
tice, most documents in a collection share a similar structure. It is considered as a good
practice that each entity or object only contains relevant fields required to represent the
document. Schema flexibility is a powerful tool which allows documents in MongoDB to
closely resemble and reflect the application-level domain objects.

Vert.x project uses a MongoDB persistor bus module to provide the necessary CRUD
operations for the MongoDB instance over the event bus. MongoDB is a practical choice
for persisting Vert.x and JavaScript client-side application data since it has native support
for JSON documents. Although it is good practice to validate any data on the server-
side before persisting, this was omitted from this proof of concept project, since the data
access with the MongoDB persistor was also possible from the client-side via the event
bus propagating JSON messages.

4.4.3 Services

Because of a simple domain model in the example project, the service implementations
in Java and Groovy projects do not differ much. Although Groovy provides a few lines
shorter implementation in general, but essentially the content is the same. In addition, the
service implementations in the Vert.x project are also fundamentally identical.

Business logic, which is possibly the most important code of an application, is im-
plemented in the service methods. It is essential that the actual logic is isolated from any
excess or additional code, thus Groovy can help with its syntax. One of the big advantages
Groovy has over Java is its natural and simple way of handling and producing JavaScript
Object Notation messages. Generation of JSON messages in Java is extensively verbose
and laborious:



www.manaraa.com

4. Implementation 60

1 public JSONArray listDepartmentsJson() throws JSONException {
2 JSONArray departmentArray = new JSONArray();
3 for (Department department : departmentRepository.findAll()) {
4 JSONObject departmentJSON = new JSONObject();
5 departmentJSON.put("id", department.getId());
6 departmentJSON.put("name", department.getName());
7 departmentArray.put(departmentJSON);
8 }
9 return departmentArray;

10 }

Groovy can achieve this same JSON generation in just one line with Grails automatic
support for marshalling to JSON:

1 def listDepartmentsJson() {
2 Department.list() as JSON
3 }

Grails also supports automatic marshalling to XML. In addition, Groovy provides an
extensive and straightforward XML and JSON builders, and familiar dot notation.

The business logic in the Vert.x project is implemented on the client-side using An-
gularJS services and the Mongo persistor on the event bus when data access is required.
Groovy’s ability to handle JSON contributed also to the selection of the server-side pro-
gramming language in the Vert.x project.

4.5 View

View represents the front-end of a web application, an interface for the user to interact
with. An average user with vague or no knowledge on how the application works behind
the view might argue that the view represents the whole application. Therefore, a bug
in the view seems like a bug in the whole application even though it is only related to
representation semantics. Thus the view undoubtedly forms the feeling of quality over
the whole application. A view representing a slightly distorted data table might induce a
doubt over the correctness of the whole application.

View of a web application is most often an HTML document or its variant. These
documents are usually built using error-prone string concatenation which is likely to cause
problems, for example, with character escaping. String concatenation poses also security
issues including JavaScript injection in any structured data.

JavaServer Pages (JSP) technology is the standard way to build HTML documents in
Java EE environment. JSP technology separates the user interface from content genera-
tion. JSP Standard Tag Library (JSTL) provides a collection of tag libraries that imple-
ment general-purpose functionality common to many web applications.

The view which is rendered from the JSP file is actually created by concatenating
strings. Therefore, it is inherently bad to implement views with technologies that use
string concatenation if the correctness of the view has any requirements. All views that are



www.manaraa.com

4. Implementation 61

implemented using a structured document should be created by serializing structural data
with ready-made tools to ensure well-formed and correct structure. View technologies
like JSP and GSP can only be used safely in conjunction with such a preemptive tool
that evaluates all programmer output against any possible error conditions and warns the
programmer of any potential defects.

AngularJS template system provides a different approach since it works on DOM ob-
jects and not on strings. The template is written in a standard HTML string which the
browser parses into the DOM. The DOM is used as an input for the AngularJS template
engine known as the compiler. The compiler looks for directives to sets up watches on the
model. This approach results in a continuously updating view based on the model, with
no need for template model re-merging.

Program 4.6 shows a JSP file composed mostly of HTML with some JSP tags and EL
expressions. The tag libraries used are introduced after the page header in the beginning
of the file. Localization messages are fetched from resource files with fmt:message tag
which can handle message parameters. Core library provides conditional formatting with
c:if tag and looping with c:forEach tag. Text escaping is done with c:out tag.

1 <%@ page contentType="text/html;charset=UTF-8" language="java" %>
2 <%@ taglib uri="http://www.springframework.org/tags/form" prefix="form" %>
3 <%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>
4 <%@ taglib uri="http://java.sun.com/jsp/jstl/fmt" prefix="fmt" %>
5 <html>
6 <head>
7 <meta name="activePage" content="DEPARTMENTS"/>
8 <title><fmt:message key="departments.title"/></title>
9 </head>

10 <body>
11 <div class="container">
12 <div class="row">
13 <div class="span8 offset2">
14 <c:if test="${!empty departments}">
15 <h3><fmt:message key="departments.title"/></h3>
16 <table class="table table-bordered table-striped">
17 <thead>
18 <tr>
19 <th><fmt:message key="departments.table.id"/></th>
20 <th><fmt:message key="departments.table.name"/></th>
21 </tr>
22 </thead>
23 <tbody>
24 <c:forEach items="${departments}" var="department">
25 <tr>
26 <td><c:out value="${department.id}"/></td>
27 <td><c:out value="${department.name}"/></td>
28 </tr>
29 </c:forEach>
30 </tbody>
31 </table>
32 </c:if>
33 </div>
34 </div>
35 </div>
36 </body>
37 </html>

Program 4.6: JSP page to list departments.



www.manaraa.com

4. Implementation 62

Groovy and Grails provides a similar view technology called Groovy Server Pages
(GSP) designed to resemble JSP, but with far more flexible and intuitive syntax. Pro-
gram 4.7 shows a similar GSP file composed mostly of HTML with GSP tags and EL
expressions. Convention over configuration omits the need to specify the used tag li-
braries. Localization messages are fetched from resource files with g:message tag which
can handle message parameters with more compact syntax. Core library provides condi-
tional formatting with g:if tag and looping with g:forEach tag.

1 <%@ page contentType="text/html;charset=UTF-8" %>
2 <html>
3 <head>
4 <meta name="activePage" content="DEPARTMENTS"/>
5 <title><g:message code="departments.title"/></title>
6 <meta name="layout" content="main">
7 </head>
8 <body>
9 <div class="container">

10 <div class="row">
11 <div class="span8 offset2">
12 <g:if test="{!empty departments}">
13 <h3><g:message code="departments.title"/></h3>
14 <table class="table table-bordered table-striped">
15 <thead>
16 <tr>
17 <th><g:message code="departments.table.id"/></th>
18 <th><g:message code="departments.table.name"/></th>
19 </tr>
20 </thead>
21 <tbody>
22 <g:each in="${departments}" var="department">
23 <tr>
24 <td>${department?.id}</td>
25 <td>${department?.name}</td>
26 </tr>
27 </g:each>
28 </tbody>
29 </table>
30 </g:if>
31 </div>
32 </div>
33 </div>
34 </body>
35 </html>

Program 4.7: GSP page to list departments.

Grails provides additional approaches to text escaping. When using a default config-
uration of a Grails application all of the potentially harmful strings need to be explicitly
escaped with a encodeAsHTML() method that Grails provides on the String class. This
approach provides a very clear, although a bit verbose syntax. Since this is a method em-
bedded in the String class it is available everywhere in the application, not just in the GSP
files:

1 department?.name?.encodeAsHTML()

Another approach is to enable auto-escaping in GSP files with a default codec option in
the Grails configuration file Config.groovy. A configuration property grails.views.default.codec



www.manaraa.com

4. Implementation 63

is used to set the default codec to encode data when using an ${} expression. When the
default codec property is set to html, utilizing the ${} expression in any GSP file will
invoke the encodeAsHTML() method automatically:

1 grails.views.default.codec = "html"

Program 4.8 shows an AngularJS template file composed mostly of standard HTML
along with AngularJS directives and markup which defaults to double curly brace notation
{{ }} to bind expressions to elements. Localization messages are fetched from resource
files using a custom filter i18n registered with the AngularJS application module.

1 <div class="tab-pane" id="DEPARTMENTS">
2 <div class="row">
3 <div class="span8 offset2">
4 <span ng-show="departments.length">
5 <h3>{{’departments.title’ | i18n}}</h3>
6 <table class="table table-bordered table-striped">
7 <thead>
8 <tr>
9 <th>{{’departments.table.id’ | i18n}}</th>

10 <th>{{’departments.table.name’ | i18n}}</th>
11 </tr>
12 </thead>
13 <tbody>
14 <tr ng-repeat="department in departments | orderBy:’id’">
15 <td>{{department.id}}</td>
16 <td>{{department.name}}</td>
17 </tr>
18 </tbody>
19 </table>
20 </span>
21 </div>
22 </div>
23 </div>

Program 4.8: AngularJS template tab pane to list departments.

The i18n filter utilizes a jQuery plugin jquery-i18n-properties for providing interna-
tionalization from .properties files as in Java and Groovy projects:

1 angular.module(’polyglotVertxModule’ , []).filter(’i18n’, function () {
2 return function (key, params) {
3 if (params) {
4 params.unshift(key)
5 return jQuery.i18n.prop.apply(this, params)
6 }
7 return jQuery.i18n.prop(key)

AngularJS directives provide conditional formatting with an ng-show and similar direc-
tives, and looping with an ng-repeat directive. The ng-repeat directive at the line 14 uses a
ready-made orberBy filter to return a sorted copy of the array. Text escaping can be done
with ng-bind directive or with the template markup {{ }} which is less verbose.

GSP tags reduce some of the verbosity compared to corresponding JSP tags. For ex-
ample, a JSP tag ftm:message requires multiple lines when parameters are needed:



www.manaraa.com

4. Implementation 64

1 <fmt:message key="overview.total">
2 <fmt:param value="${departments.size()}"/>
3 <fmt:param value="${employees.size()}"/>
4 </fmt:message>

In contrast, Grails equivalent provides a one line solution with args property:

1 <g:message code="overview.total" args="[departments.size(), employees.size()]"/>

AngularJS provides even shorter solution with a clear and syntactically simple way for
application internalization by using filters. Filters can be chained and additional parame-
ters provided. Following example uses the previously described i18n filter with additional
parameters:

1 {{’overview.total’ | i18n:[departments.length,countEmployees()]}}

All of the above internationalization examples produce the same message to be ren-
dered on the view. AngularJS template directives and markup appear all around less
verbose than JSP and GSP technologies, although the comparison remains with these too,
since there are exceptions where JSP tags are less verbose compared to GSP tags.

Program 4.9 describes an example JSP form to add a department to the system. The
form definition is wrapped with a Spring form:form tag which takes care of the data
binding of the form object. Spring provides elegant data binding with form:input and
form:errors tags.

1 <form:form method="post" action="add" commandName="department" class="form-horizontal">
2 <div class="control-group">
3 <form:label cssClass="control-label" path="name">
4 <fmt:message key="departments.form.name"/>
5 </form:label>
6 <div class="controls">
7 <form:input path="name"/>
8 <form:errors path="name" cssClass="alert alert-error" />
9 </div>

10 </div>
11 <div class="control-group">
12 <div class="controls">
13 <button class="btn btn-primary"><fmt:message key="departments.form.submit"/></button>
14 </div>
15 </div>
16 </form:form>

Program 4.9: Spring form to add a department.

Program 4.10 shows a similar GSP example wrapping the form definition with a Grails
g:form tag. Grails data binding proves to be a bit more verbose concerning error handling,
compared to the one line solution in the Spring example. All of the form field errors
have to be explicitly checked with the g:hasErrors, since the g:fieldError has no attribute to
provide necessary presentation semantics, forcing it to be placed inside an additional span
or a similar HTML element.



www.manaraa.com

4. Implementation 65

1 <g:form method="post" controller="department" action="add" class="form-horizontal">
2 <div class="control-group">
3 <label class="control-label" id="name"><g:message code="departments.form.name"/></label>
4 <div class="controls">
5 <g:textField name="name" value="${department?.name}"/>
6 <g:hasErrors bean="${department}" field="name">
7 <span class="alert alert-error">
8 <g:fieldError field="name" bean="${department}"/>
9 </span>

10 </g:hasErrors>
11 </div>
12 </div>
13 <div class="control-group">
14 <div class="controls">
15 <button class="btn btn-primary"><g:message code="departments.form.submit"/></button>
16 </div>
17 </div>
18 </g:form>

Program 4.10: Grails form to add a department.

AngularJS provides data binding of form controls through directives. An example
form is shown in Program 4.11. The form definition is wrapped with AngularJS form

directive that creates an instance of a FormController. The FormController monitors all
control directives and nested forms as well as their state, such as field being $valid or
$invalid and $dirty or $pristine. A novalidate attribute is used to indicate that the form is
not to be validated on submit by the native form validation support of the browser.

1 <form name="departmentForm" class="form-horizontal" novalidate>
2 <div class="control-group">
3 <label class="control-label" for="name">{{’departments.form.name’ | i18n}}</label>
4 <div class="controls">
5 <input type="text" id="name" name="name" ng-model="department.name" required/>
6 <span class="alert alert-error" ng-show="departmentForm.name.$error.required">
7 {{’NotEmpty.department.name’ | i18n}}
8 </span>
9 </div>

10 </div>
11 <div class="control-group">
12 <div class="controls">
13 <button class="btn btn-primary" ng-disabled="!departmentForm.$valid"
14 ng-click="addDepartment(department)">
15 {{’departments.form.submit’ | i18n}}
16 </button>
17 </div>
18 </div>
19 </form>

Program 4.11: AngularJS form to add a department.

An ng-model directive is used to bind form data to a model object in scope via an input

directive control field as shown at line 5. A required attribute enforces the client-side
validation. A validation error message can be customized as shown between lines 6 to 8.
An $error is an object hash that contains references to all invalid controls or forms. The
keys are validation tokens corresponding to the validation attributes such as required, url
or email. Values are control arrays or forms that are $invalid with the given error.



www.manaraa.com

4. Implementation 66

In addition, most of the HTML markup with CSS presentation semantics enhanced
with Twitter Bootstrap, and JavaScript including jQuery implementations used in the
views were reusable as whole. Little or none refactoring was required when reusing these
in all projects.

4.6 Observations on Groovy as the programming language

Groovy programming language has the potential to improve web development, and it is
an easy acquaintance for any Java developer. Most valid Java files are also valid Groovy
files. Since Groovy does not require all the elements that Java requires, it is possible for
Java developers to gradually amend the familiar Java syntax with Groovy idioms. Thus
reducing the boilerplate of Java. As seen in Subsection 4.4.1, it is also possible to integrate
a complete Java legacy domain model with Groovy and Grails web application.

Groovy can be used to implement the same as Java with less boilerplate and reduced
verbosity, but it is still seen as a controversial programming language, although backed
up with developer buzz. Question remains, should it be used in enterprise applications or
just as a powerful scripting language on the Java Virtual Machine.

4.6.1 Amount of code

In comparison to Java, Groovy provides a less verbose and more expressive syntax which
reduces the amount of code needed to implement the same functionality. Groovy of-
fers some functional programming style advantages over Java, for example, closures can
remove the excess use of loop structures. In addition, Grails web framework uses con-
vention over configuration and do not repeat yourself (DRY) principles that reduce a
significant amount of configuration required.

4.6.2 Code quality

Code quality does not directly imply anything about the amount of defects in an applica-
tion. Architectural choices and design decisions are important factors that reflect on the
code quality. These prove to be especially important guidelines when something needs to
be changed or extended, or when introducing new developers.

Syntactic advantages can improve code quality by making the implementations more
clear and intuitive. Groovy has the potential to reduce errors by making the code more
fluent. This is because of the increased expressiveness and reduced amount of supportive
code. Since Groovy implementations are more compact and have less boilerplate and
irrelevant code, the actual business logic becomes more visible. In addition, functional
programming style closures can be used to remove loops which tend to be error-prone
sections in Java application.



www.manaraa.com

4. Implementation 67

4.6.3 Productivity

Groovy can increase developers productivity because the advanced syntax allows to write
the intent more clearly without the necessary loops and temporary variables required in
Java. Although this requires more comprehensive knowledge of Groovy and its features.

Grails follows the convention over configuration and do not repeat yourself principles
which are powerful tools to increase productivity. In addition, the resulting learning curve
with a new programming language and framework did not hinder the development pro-
cess, if more so enhanced it because learning something new was taken as a challenge to
improve oneself.

4.7 Observations in web development: traditional methods
versus client-side

Vert.x project uses the principles of a thin server architecture to implement a client-side
single-page application. Groovy programming language is used to implement the server-
side necessities and JavaScript with AngularJS web framework to implement the client-
side SPA. Vert.x framework provides seamless interaction over the event bus and is used
to integrate the client-side and server-side.

Vert.x provides a lightweight, high-performance alternative to the Java EE program-
ming model described in Section 3.4. Vert.x is designed for modern mobile, web, and
enterprise applications. In addition, Vert.x applications should ensure good scalability
and be very fast. Vert.x provides a highly-optimized runtime environment utilizing the
strengths of the JVM.

AngularJS provides a powerful framework to implement web applications with pure
client-side JavaScript. It offers declarative templates with data-binding, dependency in-
jection, comprehensive testability, and an architectural approach named Model View
ViewModel (MVVM) pattern based profoundly on the Model-view-controller (MVC)
pattern.

4.7.1 Amount of code

Vert.x provides many advantages by following convention over configuration principle
and supporting modular application structure. Packaging applications or reusable re-
sources as modules is made easy. Out-of-the-box modules like web servers and database
persistors can be configured and deployed in just few lines of code. In addition, an ex-
cess amount of configuration is removed by following the principles of convention over
configuration.

The Vert.x event bus and bus modules simplify the request mapping significantly
client-side applications. Deployed bus modules register on the event bus and provide,



www.manaraa.com

4. Implementation 68

for example, necessary CRUD operations for data access working instantly both on the
server-side and client-side.

AngularJS provides a fully fledged web framework with reduced verbosity and in-
creased expressiveness compared to many web frameworks. It is designed for web appli-
cation development all the way to its core. AngularJS conventions and directives reduce
large amount of excess jQuery JavaScript code and Twitter Bootstrap presentation seman-
tics.

4.7.2 Code quality

Architectural patterns and design principles reflect on the code quality, and as mentioned
before, code quality is not an inverse of the amount of faults in the application. Vert.x and
AngularJS frameworks both provide syntactic advantages which improve the code quality
by making the implementations more fluent and intuitive. The increased expressiveness
and reduced amount of supportive code has the potential to reduce errors.

The Groovy implementation on the server-side is more compact and has less boiler-
plate and irrelevant code compared to a Java alternative. Similarly AngularJS reduces
lines of irrelevant code otherwise required by the JavaScript and jQuery implementations,
thus making the implementations more compact, and the actual business logic more visi-
ble.

Web application view is often an HTML file or its variant. The HTML page is built
using an error-prone string concatenation which is likely to cause problems, for exam-
ple, with character escaping, and has security issues like JavaScript injection. AngularJS
has a different approach since it works on DOM objects and not on strings. The tem-
plate is written as a standard HTML from which the browser parses the DOM. AngularJS
template engine uses the DOM as an input and performs necessary transformations on it
directly. This approach provides a continuously updating view based on the model, with
no deed for re-merging the model with the template.

4.7.3 Productivity

Client-side single-page applications are quickly becoming de facto standard in web devel-
opment. Vert.x and AngularJS web frameworks are powerful technologies with advanced
practices that support productive web application development.

The choice of programming languages and frameworks should be made based on the
complexity of the web application and on the assumption of an increased developer pro-
ductivity. Selected tools and techniques should make the development experience as en-
joyable and as productive as possible. Although implementing a new architecture with
new programming languages and frameworks definitely requires a learning process which
can hinder the development at the beginning.



www.manaraa.com

4. Implementation 69

4.7.4 Testing

AngularJS was designed to be testable from the beginning. It encourages behavior-view
separation and comes with bundled mocks, and also takes full advantage of dependency
injection. AngularJS also provides an end-to-end scenario runner which eliminates test
flakiness by understanding how the AngularJS works inside. In addition, applications
using Vert.x framework can be tested using any programming language that is supported.



www.manaraa.com

70

5. EVALUATION

Polyglot programming has the potential to enhance web development in various areas.
Different programming languages and frameworks promise an increase in productivity,
reduced amount of code and improved code quality that together promote better maintain-
ability. It is also important to realize that polyglot programming and the use of polyglot
programming pyramid is not constrained only to web development.

Polyglot programming is a powerful tool for developers with an open mindset. In-
crease in the amount of required knowledge is seen as a challenge to improve oneself as a
developer rather than an obligation to barely overcome in an attempt to finish the task at
hand.

This chapter summarizes and evaluates the results of this thesis. This includes a com-
parison of the observations of this thesis presented in Chapter 4 with the related work and
previous results described subsequently. The context of the results are generalized from
programming language specific subjects to more general advantages and disadvantages on
the polyglot programming approach in the subsequent discussion of the results section.

5.1 Related work and previous results

Related work and previous results are presented from five projects in the context of poly-
glot programming in web development. These projects are used to provide a more exten-
sive research context and in-depth discussion of results.

In addition, some of the implementations were used to provide more specific technical
comparison on different programming languages on the JVM and interoperability with
Java. Some of the projects only provide a brief technical description since the technical
documentation was omitted due to confidentiality reasons. However, they still provide
valuable discussion of results.

Lähteenmäki [24] describes a simple web application to experiment with Scala as a
replacement to Java in a real-world situation. A direct comparison is possible since the
domain model and the business logic corresponds more or less to the proof of concept
project implemented in this thesis. Polyglot programming is represented on the managed
runtime where different programming languages interoperate directly.

Fjeldberg [23] provides a case study in polyglot programming context. He describes
two web development projects which introduced JRuby with Ruby on Rails into an exist-
ing Java environment. Also a web application testing project was evaluated in polyglot



www.manaraa.com

5. Evaluation 71

programming context. Technical aspects and documentations of the solutions as well as
interview transcripts were omitted due to confidentiality reasons.

All of the projects represent a different degree of polyglot programming. Managed
runtime is used in the Buypass project where the different programming languages inter-
act directly. A web based extranet solution is also deployed at managed runtime, but the
interaction between the application and legacy services is networked. In the last project,
the web browser is the integration between the web application and the tests implemented
using a different programming language. Last two of the projects are considered polyglot
only because the same team was responsible for the implementation of the applications to
be integrated.

5.1.1 Example web project with Java and Scala

Lähteenmäki [24] uses Maven to manage projects and their dependencies. All of the
project modules are implemented in Java and Scala, and also made interchangeable.
Maven handles the build process and can be utilized to choose which implementations
to use when building the project. This way parts of the project, for example, the model,
services and web application specific parts could be implemented in Java and the view
and DAO layer in Scala.

This highlights interoperability as the main polyglot programming feature in his project.
However, Lähteenmäki [24] emphasizes an issue in interoperability between Scala and
Java. He notes that interfaces have to be Java-compatible if used also from Java, which
seems to restrict and complicate the interface implementations in Scala.

Lähteenmäki [24] uses the powerful syntax of Scala to implement solutions to several
problem domains with clear risk factors to benefit from the static typing in courtesy of the
Scala compiler. In addition, Scala’s implicit conversions, operator overloading and type
inference is used to enhance the syntax. Scala implementation shows similar advantages
over the Java implementation as did the Groovy implementation described in this thesis.

5.1.2 Buypass: JRuby with existing Java libraries

Fjeldberg [23] provides a case study on a web project that experimented with an existing
Java solution interoperability with a JRuby and Ruby on Rails high-productivity web
framework. Buypass is a company which provides web based identification and payment
systems mainly implemented with Java technologies. Goal was to evaluate whether by
introducing Rails framework they could increase productivity and reduce the overall cost
of web development. In addition, could the framework and the programming language be
introduced in their existing architecture.

The first prototype proved that existing Java libraries could be directly accessed with
JRuby by making use of the programming language interoperability on the JVM. The



www.manaraa.com

5. Evaluation 72

second prototype verified that Ruby on Rails could be utilized in their existing architecture
without jeopardizing security aspects. However some additional work was required to
overcome problems with the architecture using a centralized Java server which provided
all data access. [23]

Fjeldberg [23] notes that developers experienced an increase in productivity and ease
of learning when using Rails framework. A programming language without need for a
compilation, utilizing the convention over configuration and do not repeat yourself prin-
ciples enhanced the development process significantly. However, some of the productivity
gain was counteract by the lack of automatic refactoring and the increased need for tests.

5.1.3 Web based extranet: JRuby with existing Java legacy

Fjeldberg [23] describes another case study on a project to provide an updated solution
for an outdated nearly ten years old Java legacy extranet solution. Based on the success of
the Buypass project, a cheaper and faster Ruby on Rails solution was offered compared
to an original Java solution estimate.

Challenge was to build a new solutions on top of an existing legacy database with
hundreds of tables. In addition, the client was reluctant to discard any of their existing
Java code. [23]

Fjeldberg [23] states that the interoperability of JRuby with existing Java infrastructure
was used as the major selling point for Ruby on Rails. However, the interoperability was
not used and the interaction between existing services was achieved with servlets. Again,
learning the Ruby on Rails framework was found easier than equivalent in .Net or Java.

5.1.4 Au2sys: Java web application with RSpec and Watir
tests

Fjeldberg [23] provides yet another case study. Au2sys is a complex Java web application
on the public sector. The challenge was to implement an extensive automated web testing
on the web application with complex business rules and a web interface.

Fjeldberg [23] notes that RSpec and Watir were evaluated as best tools available at that
time. Watir framework was used to interact with the browser, and RSpec framework to
implement the tests. This architectural approach allowed a new programming language
and frameworks to be introduced into the project independently from the web application
Java code.

5.1.5 Required knowledge

Java is intended for an average programmer [140], whereas Lähteenmäki [24] argues
that Scala developers are required more effort and dedication. For example, the shift in



www.manaraa.com

5. Evaluation 73

paradigm presents a huge step for an average developer. Balancing between expressive-
ness and verbosity can produce unreadable code if not skilled and careful. In addition,
more extensive knowledge is required since more is happening behind the scenes, for
example, automatic getters and setters. [24]

Lähteenmäki [24] states that Scala is a powerful tool for a capable programmer to re-
think existing structures and design principles with concepts like mixins and implicits. He
notes that Java requires supportive libraries, frameworks and technologies, while similar
implementations in Scala would be straightforward providing static type safety and no
need to learn new tools or syntax. [24]

Fjeldberg [23] states that the increase in knowledge requirements for both the develop-
ers and management is perceived as disadvantage. However, developers who participated
in the projects reported that learning a new programming language and framework was
easier than learning an equivalent framework in Java. Fjeldberg [23] also noted that ev-
ery time a new programming language is introduced into an application, the amount of
developers with enough knowledge to maintain decreases. [23]

5.1.6 Amount of code

Scala reduces the amount of code needed to implement the same functionality because it
is less verbose and more expressive. Lähteenmäki [24] suggest that higher level functions
with more convenient syntax for anonymous inner classes and functional language struc-
tures can remove the excess use of loop structures in imperative programming languages.
Similarly, Fjelberg [23] states that dynamic programming languages offer higher level of
abstraction and reduce lots of repetition. [23; 24]

Lähteenmäki [24] notes that in order to make a bigger impact, Scala has to be ap-
plied in a more advanced level. A smaller codebase can be achieved by re-thinking the
whole application architecture with the help of higher level functions, traits, implicits et
cetera. Lähteenmäki [24] states that a simple web project cannot demonstrate these ideas
at least when the architecture is based mainly on traditional frameworks like Spring and
Hibernate. [24]

5.1.7 Code quality

Syntactic advantages can improve code quality by making the implementations more clear
and intuitive. Lähteenmäki [24] argues that Scala has the potential to reduce errors by
making the code easier, thus reducing the lines of code needed because of the increased
expressiveness and reduced amount of supportive code. Therefore, Scala implementations
have less boilerplate and irrelevant code, which makes it easier to focus on the relevant
parts, thus making the actual business logic more visible. Code quality also benefits
from stronger typing, functional paradigm and clean syntax to reduce programming errors



www.manaraa.com

5. Evaluation 74

like null pointer or class cast exceptions. Thus programmers working with Scala can
implement more reliable programs when compared to Java. Lähteenmäki [24] states that
immutability and stateless programming removes errors in many common places where
Java might pose errors. In addition, functional programming removes loops which tend
to be error-prone sections in Java applications. [24]

5.1.8 Productivity

Lähteenmäki [24] argues that developers productivity increases with Scala since the ad-
vanced syntax allows to write the intent, without the necessary loops and temporary vari-
ables needed in Java. Although this requires comprehensive knowledge of Scala and IDE
support. Fjeldberg [23] provides similar results. Convention over configuration and do
not repeat yourself principles included in selected programming languages and frame-
works presented an increase in productivity. Start developing at once and no compilation
cycle was seen as approaches that also increased productivity. [23; 24]

In addition, Fjeldberg [23] highlights that developers had fun while developing with
new programming languages and with changed perspective. The fact that the development
methodology changed, the developers were forced to write extensive unit testing to ensure
type safety, since they could no longer rely on static type safety and compile cycle to run
through the whole application. [23]

5.2 Discussion of the results

A repeating pattern is visible in the results. Selecting an appropriate programming lan-
guage for the task at hand proves to be more productive and better in any way possible over
and over again. It is important to realize that this does not imply that one should always
choose a new programming language. It simply states that if any programming language
is more appropriate for the task at hand, it should be selected or at least considered re-
gardless of the possible increase in required knowledge or the decrease of developers with
enough knowledge in hiring or maintenance.

Vert.x represents a new alternative to the Java EE programming model and includes
its own runtime environment. Its programming model with asynchronous approach is
completely different to any approaches taken elsewhere in the Java ecosystem. This is
particularly useful when many open connections needs to be maintained, as WebSockets
necessitate. In addition, Vert.x applications should ensure good scalability and be per-
form very fast. Vert.x utilizes the strengths of the JVM as a highly-optimized runtime
environment.



www.manaraa.com

5. Evaluation 75

5.2.1 Amount of code

Programming languages provide different levels of verbosity and expressiveness which
can reduce the amount of code required to implement the same functionality. For exam-
ple, higher level functions with more convenient syntax for anonymous inner classes and
functional language structures can remove the excess use of loop structures in imperative
programming languages. Similarly, dynamic programming languages offer a higher level
of abstraction and reduce lots of repetition.

Programming languages that follow convention over configuration and do not repeat
yourself principles can reduce a significant amount of configuration and boilerplate code.
In addition, separation of concerns is a powerful tool when packaging applications or
reusable resources as modules. Out-of-the-box modules and applications can provide
powerful functionalities in just few lines of code.

Lean programming practices can be used to eliminate waste effort and boilerplate code
by favoring “pull” design over “push” design. Since implementations are built only to
satisfy the needs of business requirements the necessary code is usually shorter. For
example, repository pattern can be used to abstract the data access layer and shield the
rest of the application implementation from having to know how the persistence works.

In order to make a bigger impact, the chosen programming language has to be ap-
plied in a more advanced level. A smaller codebase can be achieved by re-thinking the
whole architecture of the application to correspond with the best practices of the chosen
programming language and frameworks.

5.2.2 Code quality

Code quality does not directly imply anything about the amount of defects in an applica-
tion. Architectural patterns and design principles are important factors that reflect on the
code quality. These represent important guidelines when creating, changing or extending
an application, or when introducing new developers.

Different programming languages and paradigms present syntactic advantages that can
improve code quality by making the implementations more clear and intuitive. This has
the potential to reduce errors by making to code more readable. Also different frame-
works provide syntactic advantages which can improve the code quality. In addition, the
increased expressiveness and reduced amount of supportive code reduces the possibility
of erroneous code.

Implementations that are more compact and have less boilerplate and irrelevant code
enable developers to focus on the relevant sections, thus making the actual business logic
more visible. In addition, stronger typing, functional paradigm and clean syntax can help
to reduce programming errors like null pointer or class cast exceptions. Immutability
and stateless programming are also powerful tools that remove errors in many common



www.manaraa.com

5. Evaluation 76

places where imperative programming languages might pose errors. For example, func-
tional programming removes loops which tend to be error-prone sections in imperative
programming languages.

5.2.3 Productivity

Developers tend to divide roughly into two categories presented in Subsection 2.11. The
language mavens concentrate their effort on gathering knowledge on new programming
languages and features, whereas tool mavens familiarize with development tools to en-
hance productivity. These two perspectives, or more so traits are competitive. Therefore,
the more invested in learning programming language features, the bigger is the benefit, al-
though to the exclusion of tool features and vice versa. Polyglot programmers are though
as language mavens, although polyglot programming does not imply the use of new and
unsupported programming languages and features.

Advanced syntax in several programming languages increase developer productivity,
since it allows developers to write the intent without the necessary loops and temporary
variables. Although this requires a comprehensive knowledge of the programming lan-
guage and frameworks used as well as a good IDE support.

When choosing programming languages and frameworks for web development, the
decisions should always be made based on the complexity of the web application and
by following the assumption of an increased developer productivity. Chosen tools are
supposed to make the development experience as enjoyable and productive as possible.

In addition, learning a new programming language and framework seems to enhance
developer productivity since learning something new is taken as a challenge to improve
oneself. Therefore, the increased amount in learning is countered by the results.

Architectural approaches like thin server architecture and single-page application in
client-side web application development are becoming de facto standard. Thus there ex-
ists powerful web frameworks and technologies with best practices to make web applica-
tion development more productive.



www.manaraa.com

77

6. CONCLUSION

This thesis has provided a comprehensive research on polyglot programming in web de-
velopment and on the Java platform. This includes a literature study on polyglot program-
ming covering associated advantages and disadvantages and how polyglot programming
is used in modern-day web application development, testing, deployment, concurrency
and in business rules modeling. This thesis also studies how polyglot programming can
be utilized on the Java Virtual Machine and describes cases how, when and where it might
prove useful. In addition, a new and noteworthy Vert.x framework with high promises on
polyglot programming is described.

This thesis enhances the polyglot programming pyramid to work as an architectural
pattern to solve and document problem domains suitable for polyglot programming. In
addition, four implementations were made to research how polyglot programming can be
utilized on the Java Virtual Machine. The observations were compared against related
work and previous results from two example web projects and three case study projects
presented in polyglot programming in web development context.

6.1 Recommendations

Polyglot programming has the potential to improve web development in various areas.
Perceived advantages are increased productivity, reduced amount of code and improved
code quality that together promote better maintainability. Perceived disadvantages are a
steep learning curve that affects on required knowledge, maintainability, and tool support.
Although increase in the amount of required knowledge is also perceived as a challenge
to improve oneself as a developer rather than an obligation to barely overcome.

Support for alternative programming languages on the Java Virtual Machine have come
a long way. While the compatibility with existing software systems and investments on the
Java technology can be retained, alternative programming language can be used provide
better solutions to certain problems. This implies that even for a Java technology centered
organizations, the automatic choice for every programming task is not always Java. It is
fundamentally important to understand the different ways how programming languages
can be classified to be able to select the most appropriate programming language for the
task at hand.

Polyglot programming divides the different programming languages roughly into three
layers. The particular layers are fit for different problem domains and programming chal-



www.manaraa.com

6. Conclusion 78

lenges. The stable layer consist of programming languages like Java and Scala to do the
heavy lifting, whereas programming languages like Groovy and Clojure are more suitable
for tasks in the dynamic layer providing rapid web development. The domain layer con-
sists mainly on domain-specific languages targeting specific problem domains like HTML
markup and CSS presentation semantics or SQL.

The core business functionality of an existing production software is almost never the
correct place to introduce a new programming language. The core requires a high-grade
support with comprehensive test coverage in addition to the proven stability of the pro-
gramming language. A low-risk area should be chosen for the first deployment of an
alternative programming language.

The unique characteristics of each team and project will impact on the decision of
which programming language to choose. The nature of the projects and teams should
always be assessed by the managers and senior developers when considering to introduce
a new programming language. There are no universal right answers, only guidelines. An
agile web company could choose a Groovy on Grails for its productivity and relatively
deep pool of developers to attract young developers and grow the team quickly. Mean-
while, a small project group of experienced enthusiasts could choose Clojure for its clean
design, sophistication and power, and disregard the conceptual complexity and possible
difficulties when hiring.

6.2 Future work

The enhanced polyglot programming pyramid describes a working solution to document
and solve different problem domains in polyglot programming context. How ever it
should be further studied that in which phase of the software development process it
would prove to be most beneficial for the project and developers in it.

Case studies in real-world projects should be conducted to evaluate the advantages and
disadvantages more comprehensively to be able to draw proper conclusions and to gen-
eralize. Further work should be conducted to compare the effects of different approaches
and alternatives, although such a comparison might prove difficult unless simply compar-
ing the quality and other aspects of the projects. It would also be beneficial to study the
effects of the steeper learning curve in polyglot programming, and more precisely to find
factors that define different types of developers that are willing to try out and actually
benefit from polyglot programming.

In addition, research should be conducted to gather information on the thought process
and decisions that define the chosen programming languages, frameworks and libraries
that contribute in polyglot programming context of the project. It would be most beneficial
to find a polyglot programming project that has had more disadvantages and negative
effects due to the chosen approach or, in other words, to study where did the polyglot
programming approach of the project go wrong and why. For example, was the process



www.manaraa.com

6. Conclusion 79

of choosing the programming languages valid and were the programming languages and
tools evaluated properly at the beginning.

This thesis concentrated more on the perceived advantages and disadvantages from
the developers perspective. Additional research should also be conducted from the ap-
plication performance perspective since it plays a huge part in enterprise applications. In
addition, this thesis researched polyglot programming mainly on the Java platform. Other
platforms like .Net should also be assessed.



www.manaraa.com

80

REFERENCES

[1] Watts, N. 2008. Even more than polyglot programming. [WWW]. [Accessed
on 02.12.2012]. Available at: http://thewonggei.wordpress.com/2008/01/22/even-
more-than-polyglot-programming/

[2] Beardsmore, H. 1978. Polyglot Literature and Linguistic Fiction. International Jour-
nal of the Sociology of Language. Volume 15. Issue 1. Published online 29.07.2009.
12p.

[3] Watts, A. 2008. Mixing Programming Languages. [WWW]. [Accessed on
06.04.2013]. Available at: http://thewonggei.wordpress.com/2008/01/22/mixing-
programming-languages/

[4] Ford, N. 2008. Polyglot Programming Parallels Perched Precariously
per Patron Participation. [WWW]. [Accessed on 06.04.2013]. Available
at: http://memeagora.blogspot.fi/2008/01/polyglot-programming-parallels-
perched.html

[5] Morgan, J. 2013. What Is a Polyglot Programmer? [WWW]. [Accessed on
07.08.2013]. Available at: http://www.jeremymorgan.com/blog/programming/what-
is-a-polyglot-programmer/

[6] Brooks, F. 1987. No silver bullet: Essence and accidents of software engineering.
IEEE Computer. Volume 20. Number 4. 9p.

[7] Kullbach, B., Winter, A., Dahm, P. and Ebert, J. 1998. Program comprehension in
multi-language systems. IEEE Reverse Engineering. Fift Working Conference on
Proceedings. 9p.

[8] Bini, O. 2008. Connecting languages (or polyglot programming
example 1). [WWW]. [Accessed on 02.12.2012]. Available at:
http://olabini.com/blog/2008/04/connecting-languages-or-polyglot-programming-
example-1/

[9] Schink, H. and Kuhlemann, M. and Saake, G. and Lämmel, R. 2011. Hurdles in
multi-language refactoring of hibernate applications. International Conference on
Software And Data Technologies (ICSOFT). 5 p.

[10] Schink, H. and Kuhlemann, M. 2010. Hurdles in Refactoring Multi-Language Pro-
grams. Technical report, Otto-von-Guericke-Universität, Magdeburg/Germany.



www.manaraa.com

REFERENCES 81

[11] Mayer, P. and Schroeder, A. 2012. Cross-Language Code Analysis and Refactoring.
IEEE 12th International Working Conference on Source Code Analysis and Manip-
ulation. 10 p.

[12] Jackson, A. and Clarke, S. 2004. Sourceweave.net: Cross-language aspect-oriented
programming. Generative Programming and Component Engineering. Springer.
25p.

[13] Bini, O. 2008. Fractal programming. [WWW]. [Accessed on 02.12.2012]. Available
at: http://olabini.com/blog/2008/06/fractal-programming/

[14] Bini, O. 2008. Viability of Java and the stable layer. [WWW]. [Accessed on
02.12.2012]. Available at: http://olabini.com/blog/2008/01/viability-of-java-and-
the-stable-layer/

[15] Bini, O. 2008. Language Explorations. [WWW]. [Accessed on 02.12.2012]. Avail-
able at: http://olabini.com/blog/2008/01/language-explorations/

[16] Saluja, N. and Dhiman, P. 2008. Language Oriented Programming: The Next Pro-
gramming Paradigm. Proceeding. 7p.

[17] Fowler, M. 2005. Language workbenches: The killer-app for domain
specific languages. [WWW]. [Accessed on 28.11.2012]. Available at:
http://martinfowler.com/articles/languageWorkbench.html

[18] Dmitriev, S. 2004. Language oriented programming: The next programming
paradigm. JetBrains onBoard. Volume 1. Number 2.

[19] Ward, M. 1994. Language-oriented programming. Software Concepts and Tools.
Volume 15. Number 4. 15p.

[20] Meyer, B. 2002. Polyglot Programming. [WWW]. [Accessed on 02.12.2012]. Avail-
able at: http://www.drdobbs.com/polyglot-programming/184414854

[21] Ford, N. 2006. Polyglot Programming. [WWW]. [Accessed on 02.12.2012]. Avail-
able at: http://memeagora.blogspot.com/2006/12/polyglot-programming.html

[22] Ford, N. 2008. Polyglot Programming. In The ThoughtWorks anthology: Essays on
software technology and innovation. The pragmatic Programmers. 10p.

[23] Fjeldberg, H. 2008. Polyglot Programming: A business perspective. Master’s thesis,
Norwegian University of Science and Technology, Trondheim, Norway. 75 p.

[24] Lähteenmäki, J-M. 2010. Using Scala to Boost Web Development. Master’s thesis,
Tampere University of Technology. Tampere, Finland. 60 p.



www.manaraa.com

REFERENCES 82

[25] Delorey, D., Knutson, C. and Chun, S. 2007. Do programming languages affect pro-
ductivity? a case study using data from open source projects. IEEE. FLOSS’07 First
International Workshop on Emerging Trends in FLOSS Research and Development.
5p.

[26] Maxwell, K., Van Wassenhove, L. and Dutta, S. 1996. Software development pro-
ductivity of European space, military, and industrial applications. IEEE Transactions
on Software Engineering. Volume 22. Number 10. 13p.

[27] Maxwell, K. and Forselius, P. 2000. Benchmarking software development produc-
tivity. IEEE Software. Volume 17. Number 1. 9p.

[28] Brooks, F. 1995. Calling the shots. The mythical man-month: essays on software
engineering. Addison-Wesley. Anniversary edition. 8p.

[29] Cataldo, M., Herbsleb, J. and Carley, K. 2008. Socio-technical congruence: a frame-
work for assessing the impact of technical and work dependencies on software de-
velopment productivity. Proceedings of the Second ACM-IEEE international sym-
posium on Empirical software engineering and measurement. 10p.

[30] Cataldo, M., Bass, M., Herbsleb, J. and Bass, L. 2007. On coordination mechanisms
in global software development. Second IEEE International Conference on Global
Software Engineering, 2007. ICGSE 2007. 10p.

[31] Cataldo, M., Wagstrom, P., Herbsleb, J. and Carley, K. 2006. Identification of coor-
dination requirements: implications for the Design of collaboration and awareness
tools. Proceedings of the 2006 20th anniversary conference on Computer supported
cooperative work. 10p.

[32] De Souza, C. 2005. On the relationship between software dependencies and coordi-
nation: field studies and tool support. Doctoral dissertation, University of California.
186p.

[33] Sullivan, K., Griswold, W., Cai, Y. and Hallen, B. 2001. The structure and value of
modularity in software design. ACM SIGSOFT Software Engineering Notes. Vol-
ume 26. Number 5. 10p.

[34] Brynjolfsson, E. 1993. The productivity paradox of information technology. ACM.
Communications of the ACM. Volume 36. Number 12. 12p.

[35] Pareto, L. 2001. Types for Crash Prevention. Thesis, Chalmers University of Tech-
nology.

[36] Flanagan, C. and Abadi, M. 1999. Types for safe locking. Programming Languages
and Systems. Springer. 18p.



www.manaraa.com

REFERENCES 83

[37] Vinoski, S. 2008. Multilanguage Programming. IEEE, Internet Computing. Volume
12. Number 3. 3p.

[38] Ostrand, T., Weyuker, E. and Bell, R. 2005. Predicting the location and number
of faults in large software systems. IEEE Transactions on Software Engineering.
Volume 31. Number 4. 16p.

[39] Gaffney, J. 1984. Estimating the Number of Faults in Code. IEEE Transactions on
Software Engineering. Volume 10. Number 4.

[40] Lipow, M. 1982. Number of Faults per Line of Code. IEEE Transactions on Software
Engineering. Volume 8. Number 4. 3p.

[41] Spiewak, D. 2008. The Plague of Polyglotism. [WWW]. [Accessed on 23.12.2012].
Available at: http://www.codecommit.com/blog/java/the-plague-of-polyglotism/

[42] Hunt, A. and Thomas, D. 2000. The pragmatic programmer: from journeyman to
master. Addison-Wesley Professional. 349p.

[43] Duarte, G. 2008. Language Dabbling Considered Wasteful. [WWW]. [Accessed on
23.12.2012]. Available at: http://duartes.org/gustavo/blog/post/language-dabbling-
considered-wasteful/

[44] Nilsson, N. 2008. Should you really learn another language. [WWW]. [Accessed on
23.12.2012]. Available at: http://www.infoq.com/news/2008/05/should-you-learn-
languages/

[45] Braithwaite, R. 2007. The challenge of teaching yourself a pro-
gramming language.[WWW]. [Accessed on 23.12.2012]. Available at:
http://raganwald.com/2007/10/challenge-of-teaching-yourself.html

[46] Norvig, P. 2001. Teach Yourself Programming in Ten Years. [WWW]. [Accessed on
23.12.2012]. Available at: http://norvig.com/21-days.html

[47] Graham, P. 2004. Hackers & painters: big ideas from the computer age. O’Reilly
Media, Incorporated.

[48] Neward, T. 2009. The Polyglot Programmer. Mixing And Matchin Languages.
[WWW]. [Accessed on 06.08.2013]. Available at: http://msdn.microsoft.com/en-
us/magazine/dd483224.aspx

[49] Steele, O. 2004. The IDE Divide. [Accessed on 17.07.2013]. Available at:
http://osteele.com/posts/2004/11/ides



www.manaraa.com

REFERENCES 84

[50] Keznikl, J., Malohlava, M., Bures, T. and Hnetynka, P. 2011. Extensible Polyglot
Programming Support in Existing Component Frameworks. IEEE 37th EUROMI-
CRO Conference on Software Engineering and Advanced Applications (SEAA).
10p.

[51] Martin Fowler. 2007. RailsConf. [WWW]. [Accessed on 07.04.2013]. Available at:
http://www.martinfowler.com/bliki/RailsConf2007.html

[52] Martin Fowler. 2009. Ruby at ThoughtWorks. [WWW]. [Accessed on 07.04.2013].
Available at: http://martinfowler.com/articles/rubyAtThoughtWorks.html

[53] 451 Research. 2012. The Rise of Polyglot Programming. [WWW]. [Accessed on
06.08.2013]. Available at: https://451research.com/report-long?icid=2265

[54] Eyler, P. 2006. A New JRuby Interview and More. [WWW]. [Accessed on
07.04.2013]. Available at: http://www.linuxjournal.com/node/1000103

[55] Janzen, D. and Saiedian, H. 2005. Test-driven development concepts, taxonomy, and
future direction. IEEE Computer. Volume 38. Issue 9. 8p.

[56] North, D. 2006. Introducing BDD. Better Software. [WWW]. [Accessed on
29.04.2013]. Available at: http://dannorth.net/introducing-bdd/

[57] Beck, K. 1999. Embracing Change with Extreme Programming. IEEE Computer.
Volume 32. Issue 10. 8p.

[58] Thomas, D. and Hunt, A. 2002. Mock objects. IEEE Software. Volume 19. Issue 3.
3p.

[59] jMock. A library that supports test-driven development of Java code with mock ob-
jects. [WWW]. [Accessed on 29.04.2013]. Available at: http://jmock.org/

[60] Mocha. A mocking and stubbing library for Ruby [WWW]. [Accessed on
29.04.2013]. Available at: https://github.com/freerange/mocha

[61] Tucker, A. and Noonan, R. 2007. Programming languages: principles and
paradigms. McGraw-Hill Higher Education. Second Edition. 411p.

[62] Thompson, S. 2011. Haskell: the craft of functional programming. Addison-Wesley.
Third Edition. 585p.

[63] Hughes, J. 1989. Why Functional Programming Matters. The computer journal. Vol-
ume 32. Issue 2. 10p.

[64] Erlang. [WWW]. [Accessed on 04.04.2013]. Available at: http://www.erlang.org/



www.manaraa.com

REFERENCES 85

[65] Armstrong, J. 2007. Programming Erlang: software for a concurrent world. O’Reilly
& Associates, Incorporated. 515p.

[66] Ghodsi, A. and Armstrong, J. 2007. Apache vs. Yaws. [WWW]. [Accessed on
29.04.2013]. Available at: http://www.sics.se/ joe/apachevsyaws.html

[67] Yaws. A HTTP High performance Web Server written in Erlang. [WWW]. [Ac-
cessed on 29.04.2013]. Available at: http://hyber.org/

[68] Apache httpd. The Apache HTTP Server Project. [WWW]. [Accessed on
29.04.2013]. Available at: http://httpd.apache.org/

[69] Onnen, E. 2007. Worst Measurement Ever. [WWW]. [Accessed on 29.04.2013].
Available at: http://mykakotopia.blogspot.fi/2007/10/worst-measurement-ever.html

[70] Hoff, T. 2008. New Facebook Chat Feature Scales To 70 Million
Users Using Erlang. [WWW]. [Accessed on 29.04.2013]. Available at:
http://highscalability.com/blog/2008/5/14/new-facebook-chat-feature-scales-to-
70-million-users-using-e.html

[71] Letuchy, E. 2008. Facebook Chat. [WWW]. [Accessed on 29.04.2013]. Available
at: http://www.facebook.com/note.php?note_id=14218138919

[72] Apache Thrift. Software framework for scalable cross-language services develop-
ment. [WWW]. [Accessed on 29.04.2013]. Available at: http://thrift.apache.org/

[73] Slee, M., Agarwal, A. and Kwiatkowski, M. 2007. Thrift: Scalable Cross-Language
Services Implementation. Facebook, 156 Univesity Ave, Palo Alto, CA. [WWW].
[Accessed on 29.04.2013]. Available at: http://thrift.apache.org/static/files/thrift-
20070401.pdf

[74] Apache MPM worker. Multi-Processing Module implementing a hybrid multi-
threaded multi-process web server. [WWW]. [Accessed on 30.04.2013]. Available
at: http://httpd.apache.org/docs/2.0/mod/worker.html

[75] July 2013 Web Server Survey. [WWW]. [Accessed on 04.07.2013]. Available at:
http://news.netcraft.com/archives/category/web-server-survey/

[76] nginx (“engine x”). An open source web server. [WWW]. [Accessed on 30.04.2013].
Available at: http://nginx.org/

[77] Jagielski, J. 2011. Apache httpd v2.4: Hello Cloud: Buy you
a drink? [WWW]. [Accessed on 30.04.2013]. Available at:
http://people.apache.org/ jim/presos/ACNA11/Apache_httpd_cloud.pdf



www.manaraa.com

REFERENCES 86

[78] Business Natural Language material. [WWW]. [Accessed on 30.04.2013]. Available
at: http://blog.jayfields.com/2006/07/business-natural-language-material.html

[79] Martin Fowler. 2008. Domain Specific Language.
[WWW]. [Accessed on 29.04.2013]. Available at:
http://martinfowler.com/bliki/DomainSpecificLanguage.html

[80] Drools - The Business Logic integration Platform. [WWW]. [Accessed on
30.04.2013]. Available at: http://www.jboss.org/drools/

[81] Jess, the Rule Engine for the JavaTM Platform. [WWW]. [Accessed on 30.04.2013].
Available at: http://herzberg.ca.sandia.gov/

[82] InRule - The Premier .NET Business Rule Solution for the Microsoft Platform.
[WWW]. [Accessed on 30.04.2013]. Available at: http://www.inrule.com/

[83] BizTalk Server. [WWW]. [Accessed on 30.04.2013]. Available at:
http://www.microsoft.com/en-us/biztalk/default.aspx

[84] Blank, S. 2011. Startup Suicide - Rewriting the Code. [WWW]. [Accessed
on 06.04.2013]. Available at: http://steveblank.com/2011/01/25/startup-suicide-
%E2%80%93-rewriting-the-code/

[85] Feathers, M. 2004. Working effectively with legacy code. Prentice Hall. 456p.

[86] Evans, B. and Verburg, M. 2011. Polyglot Programming on the JVM. Java magazine,
Oracle. 3 p.

[87] Evans, B. and Verburg, M. 2012. The Well-Grounded Java Developer: Vital tech-
niques of Java 7 and polyglot programming. Manning. 496 p.

[88] Mandelbrot, B. 1983. The fractal geometry of nature. Henry Holt and Company.
468p.

[89] Gouyet, J-F. and Mandelbrot, B. 1996. Physics and fractal structures. Paris: Masson.
514p.

[90] Gamma, E., Helm, R., Johnson, R. and Vlissides, J. 1995. Design Patterns: Elements
of Reusable Object-Oriented Software. 416p.

[91] Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P. and Stal, M. 1996. Pattern-
Oriented Software Architecture: A System of Patterns. Wiley. 465p.

[92] Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P. and Stal, M. 2007. Pattern-
Oriented Software Architecture: On Patterns and Pattern Languages. Wiley. 465p.



www.manaraa.com

REFERENCES 87

[93] Perkins, L. 2009. What the Obama IT team teaches us about polyglot programming.
[WWW]. [Accessed on 06.08.2013]. Available at: http://blog.appfog.com/what-the-
obama-it-team-teaches-us-about-polyglot-programming/

[94] Raible, M. 2009. Comparing Kick-Ass Web Frameworks at The Rich
Web Experience. [WWW]. [Accessed on 30.12.2012]. Available at:
http://raibledesigns.com/rd/entry/comparing_kick_ass_web_frameworks

[95] Sebesta, R. 2009. Concepts of Programming Languages. Addison-Wesley. 765p.

[96] Syme, D., Petricek, T. and Lomov, D. 2011. The F Asynchronous Programming
Model. Practical Aspects of Declarative Languages. Springer Berlin Heidelberg.
15p.

[97] Petricek, T., Syme, D. 2011. Joinads: a retargetable control-flow construct for re-
active, paraller and concurrent programming. Practical Aspects of Declarative Lan-
guages. Springer Berlin Heidelberg. 15p.

[98] Loui, R. 2008. In praise of scripting: Real programming pragmatism. IEEE Com-
puter. Volume 41. Issue 7. 5p.

[99] Morin, R. and Brown, V. 1999. Scripting Languages. A Cross-OS Perspective.
MacTech. Volume 15. Issue 9. [WWW]. [Accessed on 01.05.2013]. Available at:
http://www.mactech.com/articles/mactech/Vol.15/15.09/ScriptingLanguages/index.html

[100] O’Grady, S. 2012. The RedMonk Programming Language Rankings:
September 2012. [WWW]. [Accessed on 14.01.2013]. Available at:
http://redmonk.com/sogrady/2012/09/12/language-rankings-9-12/

[101] Dahlke, F. 2012. JVM language popularity. [WWW]. [Accessed on 14.01.2013].
Available at: http://ubercode.de/blog/jvm-language-popularity

[102] Schwartz, A. 2010. Developer “flow.” Better for all? [WWW]. [Accessed on
14.01.2013]. Available at: http://gristmillanalytics.com/blog/?p=763

[103] Java Platform Standard Edition 7 Documentation. [WWW]. [Accessed on
13.01.2013]. Available at: http://docs.oracle.com/javase/7/docs/

[104] Gosling, J., Joy, B., Steele, G., Bracha, G. and Buckley, A. 2012. The Java Lan-
guage Specification. Java SE 7 Edition. 640p.

[105] Lindholm, T., Yellin, F., Bracha, G. and Buckley, A. 2012. The Java Virtual Ma-
chine Specification. Java SE 7 Edition. 649p.



www.manaraa.com

REFERENCES 88

[106] JSR 223: Scripting for the Java Platform. Java Community Process. [WWW]. [Ac-
cessed on 13.01.2013]. Available at: http://jcp.org/en/jsr/detail?id=223

[107] Lyman, J. 2012. Open Source Lives in Polyglot Programming. [WWW]. [Accessed
on 02.12.2012]. Available at: http://www.linuxinsider.com/story/76343.html

[108] OpenJDK. The place to collaborate on an open-source implementation of the
Java Platform, Standard Edition, and related projects. [WWW]. [Accessed on
13.01.2013]. Available at: http://openjdk.java.net/

[109] The Da Vinci Machine Project, a multi-language renaissance for the Java Virtual
Machine architecture. OpenJDK. [WWW]. [Accessed on 13.01.2013]. Available at:
http://openjdk.java.net/projects/mlvm/

[110] JSR 292: Supporting Dynamically Typed Languages on the Java Platform.
Java Community Process. [WWW]. [Accessed on 13.01.2013]. Available at:
http://jcp.org/en/jsr/detail?id=292

[111] Buckley, A. 2011. Toward a Universal VM. Java magazine, Oracle. 3 p.

[112] JSR 335: Lambda Expressions for the Java Programming Language.
Java Community Process. [WWW]. [Accessed on 13.01.2013]. Available at:
http://jcp.org/en/jsr/detail?id=335

[113] Java. [WWW]. [Accessed on 13.01.2013]. Available at: http://java.com/

[114] Design Goals of the Java Programming Language. 1997. Sun Mi-
crosystems, Inc. [WWW]. [Accessed on 13.01.2013]. Available at:
http://www.oracle.com/technetwork/java/intro-141325.html

[115] Java SE 7 Documentation. Type Inference for Generic In-
stance Creation. [WWW]. [Accessed on 05.04.2013]. Available at:
http://docs.oracle.com/javase/7/docs/technotes/guides/language/type-inference-
generic-instance-creation.html

[116] TIOBE. 2013. TIOBE Programming Community In-
dex. [WWW]. [Accessed on 13.01.2013]. Available at:
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

[117] LangPop. 2011. Programming Language Popularity. [WWW]. [Accessed on
13.01.2013]. Available at: http://www.langpop.com/

[118] Groovy. [WWW]. [Accessed on 04.03.2013]. Available at:
http://groovy.codehaus.org/



www.manaraa.com

REFERENCES 89

[119] Scala. [WWW]. [Accessed on 13.01.2013]. Available at: http://www.scala-
lang.org/

[120] Clojure. [WWW]. [Accessed on 13.01.2013]. Available at: http://clojure.org/

[121] Vert.x. [WWW]. [Accessed on 19.07.2013]. Available at: http://vertx.io/

[122] Wolf, E. 2012. Vert.x - an asynchronous, event-driven Java web frame-
work. [WWW]. [Accessed on 03.01.2013]. Available at: http://www.h-
online.com/developer/features/Vert-x-an-asynchronous-event-driven-Java-web-
framework-1615383.html

[123] Netty. [WWW]. [Accessed on 03.04.2013]. Available at: http://netty.io/

[124] Hazelcast. [WWW]. [Accessed on 03.04.2013]. Available at:
http://www.hazelcast.com/

[125] Cholakian, A. 2012. Vert.x: Why the JVM May Put Node.js on the Ropes.
[WWW]. [Accessed on 03.01.2013]. Available at: http://blog.andrewvc.com/vertx-
node-on-ropes

[126] Bintray. Serving Your Binaries. [WWW]. [Accessed on 05.08.2013]. Available at:
https://bintray.com/

[127] The Vert.x Central Module Repository. [WWW]. [Accessed on 03.04.2013]. Avail-
able at: https://github.com/vert-x/vertx-mods

[128] Node.js. [WWW]. [Accessed on 04.04.2013]. Available at: http://nodejs.org/

[129] Maven. [WWW]. [Accessed on 15.07.2013]. Available at:
http://maven.apache.org/

[130] jQuery. [WWW]. [Accessed on 15.07.2013]. Available at: http://jquery.com/

[131] Twitter Bootstrap. [WWW]. [Accessed on 15.07.2013].
http://twitter.github.io/bootstrap/

[132] Spring Framework. [WWW]. [Accessed on 13.01.2013]. Available at:
http://www.springsource.org/spring-framework

[133] Hibernate. [WWW]. [Accessed on 13.01.2013]. Available at:
http://www.hibernate.org/

[134] Grails. [WWW]. [Accessed on 13.01.2013]. Available at: http://grails.org/

[135] SockJS. [WWW]. [Accessed on 06.04.2013]. Available at:
https://github.com/sockjs/



www.manaraa.com

REFERENCES 90

[136] AngularJS by Google. HTML enhanced for web apps! [WWW]. [Accessed on
06.04.2013]. Available at: http://angularjs.org/

[137] SiteMesh. [WWW]. [Accessed on 08.07.2013]. Available at:
http://wiki.sitemesh.org/

[138] Java Persistence API. [WWW]. [Accessed on 10.07.2013]. Available at:
http://www.oracle.com/technetwork/java/javaee/tech/persistence-jsp-140049.html

[139] MongoDB. [WWW]. [Accessed on 06.04.2013]. http://www.mongodb.org/

[140] Gosling, J. and McGilton, H. 1995. The Java TMLanguage Environment. A White
Paper. Sun Microsystems Computer Company.


	Introduction
	Polyglot programming
	Definition
	Research context
	Associated advantages
	Associated disadvantages
	Polyglot programming in web development
	Development
	Testing
	Deployment
	Concurrency
	Business rules

	Polyglot software systems
	Polyglot programming pyramid
	Extending the polyglot programming pyramid
	Improving the bounded fractal representation
	Supporting architectural decision making

	Guidelines for polyglot programming
	Poly-paradigm programming
	Programming language features and tool support

	Polyglot programming on the Java platform
	Java platform
	Evolution of polyglot programming
	Programming languages on the Java Virtual Machine
	Java
	Groovy
	Scala
	Clojure

	Vert.x framework for the modern web and enterprise
	Effortless asynchronous application development
	Verticle and Vert.x instances
	Core services and modules
	Polyglot programming with Vert.x
	Support for new programming languages


	Implementation
	Project structure
	Web project with Java using Spring Framework and Hibernate
	Web project with Groovy using Grails framework
	Web project with Groovy using Grails framework and Java legacy domain model
	Single-page application with Vert.x framework and AngularJS

	Web flow execution, decorators and mapping
	Form objects, binding and validation
	Model, Repositories and Services
	Model
	Repositories
	Services

	View
	Observations on Groovy as the programming language
	Amount of code
	Code quality
	Productivity

	Observations in web development: traditional methods versus client-side
	Amount of code
	Code quality
	Productivity
	Testing


	Evaluation
	Related work and previous results
	Example web project with Java and Scala
	Buypass: JRuby with existing Java libraries
	Web based extranet: JRuby with existing Java legacy
	Au2sys: Java web application with RSpec and Watir tests
	Required knowledge
	Amount of code
	Code quality
	Productivity

	Discussion of the results
	Amount of code
	Code quality
	Productivity


	Conclusion
	Recommendations
	Future work

	References

